in

Approaching 80 years of snow water equivalent information by merging different data streams

  • 1.

    Painter, T. H. et al. The Airborne Snow Observatory: Fusion of scanning lidar, imaging spectrometer, and physically-based modeling for mapping snow water equivalent and snow albedo. Remote Sens. Environ. 184, 139–152 (2016).

    ADS  Article  Google Scholar 

  • 2.

    Guan, B. et al. Snow water equivalent in the Sierra Nevada: Blending snow sensor observations with snowmelt model simulations. Water Resour. Res. 49, 5029–5046 (2013).

    ADS  Article  Google Scholar 

  • 3.

    Entekhabi, D. et al. The Soil Moisture Active Passive (SMAP) mission. Proc. IEEE 98, 704–716 (2010).

    Article  Google Scholar 

  • 4.

    Chiang, Y.-M., Hsu, K.-L., Chang, F.-J., Hong, Y. & Sorooshian, S. Merging multiple precipitation sources for flash flood forecasting. J. Hydrol. 340, 183–196 (2007).

    ADS  Article  Google Scholar 

  • 5.

    Dalrymple, T. Flood-frequency analyses. Manual of hydrology: Part 3. Flood-flow techniques. https://pubs.usgs.gov/wsp/1543a/report.pdf (1960).

  • 6.

    Luke, A., Vrugt, J. A., AghaKouchak, A., Matthew, R. & Sanders, B. F. Predicting nonstationary flood frequencies: Evidence supports an updated stationarity thesis in the United States. Water Resour. Res. 53, 5469–5494 (2017).

    ADS  Article  Google Scholar 

  • 7.

    Dozier, J., Bair, E. H. & Davis, R. E. Estimating the spatial distribution of snow water equivalent in the world’s mountains. WIREs Water 3, 461–474 (2016).

    Article  Google Scholar 

  • 8.

    Painter, T. H. et al. Retrieval of subpixel snow covered area, grain size, and albedo from MODIS. Remote Sens. Environ. 113, 868–879 (2009).

    ADS  Article  Google Scholar 

  • 9.

    Margulis, S. A., Cortés, G., Girotto, M. & Durand, M. A Landsat-era Sierra Nevada snow reanalysis (1985–2015). J. Hydrometeorol 17, 1203–1221 (2016).

    ADS  Article  Google Scholar 

  • 10.

    Fayad, A. et al. Snow hydrology in Mediterranean mountain regions: A review. J. Hydrol. 551, 374–396 (2017).

    ADS  Article  Google Scholar 

  • 11.

    Nolin, A. W. Recent advances in remote sensing of seasonal snow. J. Glaciol. 56, 1141–1150 (2010).

    ADS  Article  Google Scholar 

  • 12.

    Hall, D. K., Riggs, G. A., Salomonson, V. V., DiGirolamo, N. E. & Bayr, K. J. MODIS snow-cover products. Remote Sens. Environ. 83, 181–194 (2002).

    ADS  Article  Google Scholar 

  • 13.

    Frei, A. & Robinson, D. A. Northern Hemisphere snow extent: regional variability 1972-1994. Int. J. Climatol. 26 (1999).

  • 14.

    CADWR. California’s three traditionally wettest months end with statewide snowpack water content less than average. https://water.ca.gov/LegacyFiles/news/newsreleases/2016/030116d.pdf (2016).

  • 15.

    Waliser, D. et al. Simulating cold season snowpack: Impacts of snow albedo and multi-layer snow physics. Clim. Change 109, 95–117 (2011).

    Article  Google Scholar 

  • 16.

    Scott, D. & McBoyle, G. Climate change adaptation in the ski industry. Mitig. Adapt. Strateg. Glob. Change 12, 1411–1431 (2007).

    Article  Google Scholar 

  • 17.

    Rittger, K., Bair, E. H., Kahl, A. & Dozier, J. Spatial estimates of snow water equivalent from reconstruction. Adv. Water Resour. 94, 345–363 (2016).

    ADS  Article  Google Scholar 

  • 18.

    Zeng, X., Broxton, P. & Dawson, N. Snowpack change from 1982 to 2016 over conterminous United States. Geophys. Res. Lett. 45, 12940–12947 (2018).

    ADS  Google Scholar 

  • 19.

    Carroll, T. et al. NOHRSC Operations and the simulation of snow cover properties for the coterminous U.S. In Proceedings of the 69th Annual Meeting of the Western Snow Conference 14 https://westernsnowconference.org/sites/westernsnowconference.org/PDFs/2001Carroll.pdf (2001).

  • 20.

    Huning, L. S. & Margulis, S. A. Climatology of seasonal snowfall accumulation across the Sierra Nevada (USA): Accumulation rates, distributions, and variability. Water Resour. Res. 53, 6033–6049 (2017).

    ADS  Article  Google Scholar 

  • 21.

    Huning, L. S. & AghaKouchak, A. Mountain snowpack response to different levels of warming. Proc. Natl. Acad. Sci. 115, 10932–10937 (2018).

    ADS  CAS  Article  Google Scholar 

  • 22.

    Wrzesien, M. L. et al. Comparison of methods to estimate snow water equivalent at the mountain range scale: A case study of the California Sierra Nevada. J. Hydrometeorol 18, 1101–1119 (2017).

    ADS  Article  Google Scholar 

  • 23.

    Mote, P. W., Hamlet, A. F., Clark, M. P. & Lettenmaier, D. P. Declining mountain snowpack in western North American. Bull. Am. Meteorol. Soc. 86, 39–50 (2005).

    ADS  Article  Google Scholar 

  • 24.

    Rice, R., Bales, R. C., Painter, T. H. & Dozier, J. Snow water equivalent along elevation gradients in the Merced and Tuolumne river basins of the Sierra Nevada. Water Resour. Res. 47, W08515 (2011).

    ADS  Article  Google Scholar 

  • 25.

    Dettinger, M., Redmond, K. & Cayan, D. Winter orographic precipitation ratios in the Sierra Nevada—Large-scale atmospheric circulations and hydrologic consequences. J. Hydrometeorol 5, 1102–1116 (2004).

    ADS  Article  Google Scholar 

  • 26.

    Lundquist, J. D., Minder, J. R., Neiman, P. J. & Sukovich, E. Relationships between barrier jet heights, orographic precipitation gradients, and streamflow in the northern Sierra Nevada. J. Hydrometeorol 11, 1141–1156 (2010).

    ADS  Article  Google Scholar 

  • 27.

    Huning, L. S. & Margulis, S. A. Investigating the variability of high-elevation seasonal orographic snowfall enhancement and its drivers across Sierra Nevada, California. J. Hydrometeorol 19, 47–67 (2018).

    ADS  Article  Google Scholar 

  • 28.

    Huning, L. S., Margulis, S. A., Guan, B., Waliser, D. E. & Neiman, P. J. Implications of detection methods on characterizing atmospheric river contribution to seasonal snowfall across Sierra Nevada, USA. Geophys. Res. Lett. 44, 10445–10453 (2017).

    ADS  Article  Google Scholar 

  • 29.

    Huning, L. S., Guan, B., Waliser, D. E. & Lettenmaier, D. P. Sensitivity of seasonal snowfall attribution to atmospheric rivers and their reanalysis-based detection. Geophys. Res. Lett. 46, 794–803 (2019).

    ADS  Article  Google Scholar 

  • 30.

    Harpold, A., Dettinger, M. & Rajagopal, S. Defining snow drought and why it matters. Eos 98, (2017).

  • 31.

    Guan, B., Molotch, N. P., Waliser, D. E., Fetzer, E. J. & Neiman, P. J. Extreme snowfall events linked to atmospheric rivers and surface air temperature via satellite measurements. Geophys. Res. Lett. 37, 12514–12535 (2010).

    Article  Google Scholar 

  • 32.

    Guan, B., Waliser, D. E., Ralph, F. M., Fetzer, E. J. & Neiman, P. J. Hydrometeorological characteristics of rain-on-snow events associated with atmospheric rivers. Geophys. Res. Lett. 43, 2964–2973 (2016).

    ADS  Article  Google Scholar 

  • 33.

    Hu, J. M. & Nolin, A. W. Snowpack contributions and temperature characterization of landfalling atmospheric rivers in the western cordillera of the United States. Geophys. Res. Lett. 46, 6663–6672 (2019).

    ADS  Article  Google Scholar 

  • 34.

    Hu, J. M. & Nolin, A. W. Widespread warming trends in storm temperatures and snowpack fate across the Western United States. Environ. Res. Lett. 15, 034059 (2020).

    ADS  Article  Google Scholar 

  • 35.

    Margulis, S. A. et al. Characterizing the extreme 2015 snowpack deficit in the Sierra Nevada (USA) and the implications for drought recovery. Geophys. Res. Lett. 43, 6341–6349 (2016).

    ADS  Article  Google Scholar 

  • 36.

    Mann, H. B. Nonparametric tests against trend. Econometrica 13, 245–259 (1945).

    MathSciNet  Article  Google Scholar 

  • 37.

    Mote, P. W., Li, S., Lettenmaier, D. P., Xiao, M. & Engel, R. Dramatic declines in snowpack in the western US. Npj Clim. Atmospheric Sci 1, 2 (2018).

    Article  Google Scholar 

  • 38.

    Ragno, E., AghaKouchak, A., Cheng, L. & Sadegh, M. A generalized framework for process-informed nonstationary extreme value analysis. Adv. Water Resour. 130, 270–282 (2019).

    ADS  Article  Google Scholar 

  • 39.

    Huning, L. S. & AghaKouchak, A. Sierra Nevada (USA) snow water equivalent (SWE) volume time series. Figshare https://doi.org/10.6084/m9.figshare.c.5055518 (2020).

  • 40.

    Nash, J. E. & Sutcliffe, J. V. River flow forecasting through conceptual models part I — A discussion of principles. J. Hydrol. 10, 282–290 (1970).

    ADS  Article  Google Scholar 

  • 41.

    Moriasi, D. N. et al. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 50, 885–900 (2007).

    Article  Google Scholar 

  • 42.

    Mao, Y., Nijssen, B. & Lettenmaier, D. P. Is climate change implicated in the 2013-2014 California drought? A hydrologic perspective. Geophys. Res. Lett. 42, 2805–2813 (2015).

    ADS  Article  Google Scholar 

  • 43.

    Wang, K. J., Williams, A. P. & Lettenmaier, D. P. How much have California winters warmed over the last century? Geophys. Res. Lett. 44, 8893–8900 (2017).

    ADS  Article  Google Scholar 

  • 44.

    Belmecheri, S., Babst, F., Wahl, E. R., Stahle, D. W. & Trouet, V. Multi-century evaluation of Sierra Nevada snowpack. Nat. Clim. Change 6, 2–3 (2016).

    ADS  Article  Google Scholar 

  • 45.

    Liang, X., Lettenmaier, D. P., Wood, E. F. & Burges, S. J. A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res. 99, 14415–14428 (1994).

    ADS  Article  Google Scholar 

  • 46.

    Holdren, G. C. & Turner, K. Characteristics of Lake Mead, Arizona–Nevada. Lake Reserv. Manag. 26, 230–239 (2010).

    CAS  Article  Google Scholar 


  • Source: Resources - nature.com

    Comparing the benefits of scooter-sharing vs. bike-sharing

    Integrative ecological and molecular analysis indicate high diversity and strict elevational separation of canopy beetles in tropical mountain forests