in

High performance polyester reverse osmosis desalination membrane with chlorine resistance

  • 1.

    Phillip, W. A. & Elimelech, M. The future of seawater desalination: energy, technology, and the environment. Science 333, 712–717 (2011).

    Article  Google Scholar 

  • 2.

    Mauter, M. S. et al. The role of nanotechnology in tackling global water challenges. Nat. Sustain. 1, 166–175 (2018).

    Article  Google Scholar 

  • 3.

    Stevens, D. M., Shu, J. Y., Reichert, M. & Roy, A. Next-generation nanoporous materials: progress and prospects for reverse osmosis and nanofiltration. Ind. Eng. Chem. Res. 56, 10526–10551 (2017).

    CAS  Article  Google Scholar 

  • 4.

    Werber, J. R., Osuji, C. O. & Elimelech, M. Materials for next-generation desalination and water purification membranes. Nat. Rev. Mater. 1, 16018–16025 (2016).

    CAS  Article  Google Scholar 

  • 5.

    Qasim, M., Badrelzaman, M., Darwish, N. N., Darwish, N. A. & Hilal, N. Reverse osmosis desalination: a state-of-the-art review. Desalination 459, 59–104 (2019).

    CAS  Article  Google Scholar 

  • 6.

    Chowdhury, M. R., Steffes, J., Huey, B. D. & McCutcheon, J. R. 3D printed polyamide membranes for desalination. Science 361, 682–686 (2018).

    CAS  Article  Google Scholar 

  • 7.

    Gohil, J. M. & Suresh, A. K. Chlorine attack on reverse osmosis membranes: mechanisms and mitigation strategies. J. Membr. Sci. 541, 108–126 (2017).

    CAS  Article  Google Scholar 

  • 8.

    Verbeke, R., Gómez, V. & Vankelecom, I. F. J. Chlorine-resistance of reverse osmosis (RO) polyamide membranes. Prog. Polym. Sci. 72, 1–15 (2017).

    CAS  Article  Google Scholar 

  • 9.

    Stolov, M. & Freger, V. Degradation of polyamide membranes exposed to chlorine: an impedance spectroscopy study. Environ. Sci. Technol. 53, 2618–2625 (2019).

    CAS  Article  Google Scholar 

  • 10.

    Do, V. T., Tang, C. Y., Reinhard, M. & Leckie, J. O. Effects of chlorine exposure conditions on physiochemical properties and performance of a polyamide membrane-mechanisms and implications. Environ. Sci. Technol. 46, 13184–13192 (2012).

    CAS  Article  Google Scholar 

  • 11.

    Glater, J., Hong, N. & Elimelech, M. The search for a chlorine-resistant reverse osmosis membrane. Desalination 95, 325–345 (1994).

    CAS  Article  Google Scholar 

  • 12.

    Werber, J. R., Deshmukh, A. & Elimelech, M. The critical need for increased selectivity, not increased water permeability, for desalination membranes. Environ. Sci. Technol. 3, 112–120 (2016).

    CAS  Article  Google Scholar 

  • 13.

    Tanugi, D. C., McGovern, R. K., Dave, S. H., Lienhard, J. H. & Grossman, J. C. Quantifying the potential of ultra-permeable membranes for water desalination. Energy Environ. Sci. 7, 1134–1141 (2014).

    Article  Google Scholar 

  • 14.

    Yao, Y. et al. Toward enhancing the chlorine resistance of reverse osmosis membranes: an effective strategy via an end-capping technology. Environ. Sci. Technol. 53, 1296–1304 (2019).

    Article  Google Scholar 

  • 15.

    Hu, J., Pu, Y., Ueda, M., Zhang, X. & Wang, L. Charge-aggregate induced (CAI) reverse osmosis membrane for seawater desalination and boron removal. J. Membr. Sci. 520, 1–7 (2016).

    CAS  Article  Google Scholar 

  • 16.

    Yao, Y. et al. A novel sulfonated reverse osmosis membrane for seawater desalination: Experimental and molecular dynamics studies. J. Membr. Sci. 550, 470–479 (2018).

    CAS  Article  Google Scholar 

  • 17.

    Zheng, J. et al. Reverse osmosis membrane with enhanced permselectivity for brackish water desalination. J. Membr. Sci. 565, 104–111 (2018).

    CAS  Article  Google Scholar 

  • 18.

    Cheremisinoff, N. P. Condensed Encyclopedia of Polymer Engineering Terms (Butterworth–Heinemann, 2001).

  • 19.

    Wu, D., Chen, F., Li, R. & Shi, Y. Reaction kinetics and simulations for solid-state polymerization of poly(ethylene terephthalate). Macromolecules 30, 6737–6742 (1997).

    CAS  Article  Google Scholar 

  • 20.

    Krevelen, D. W. V. & Nijenhuis, K. T. in Properties of Polymers: Their Correlation with Chemical Structure; their Numerical Estimation and Prediction from Additive Group Contributions Ch. 7 (Elsevier, 2009).

  • 21.

    Lide, D. R. Handbook of Chemistry and Physics (CRC Press, 2010).

  • 22.

    Kuang, J. et al. Ozonation of trimethoprim in aqueous solution: identification of reaction products and their toxicity. Water Res. 47, 2863–2872 (2013).

    CAS  Google Scholar 

  • 23.

    Miao, H. F. et al. Degradation of phenazone in aqueous solution with ozone: influencing factors and degradation pathways. Chemosphere 119, 326–333 (2015).

    CAS  Google Scholar 

  • 24.

    Park, H., Vecitis, C. D. & Hoffmann, M. R. Electrochemical water splitting coupled with organic compound oxidation: the role of active chlorine species. J. Phys. Chem. C 113, 7935–7945 (2009).

    CAS  Google Scholar 

  • 25.

    Jimenez-Solomon, M., Song, Q., Jelfs, K., Munoz-Ibanez, M. & Livingston, A. G. Polymer nanofilms with enhanced microporosity by interfacial polymerization. Nat. Mater. 15, 760–767 (2016).

    CAS  Google Scholar 

  • 26.

    Antony, A., Fudianto, R. & Cox, S. Assessing the oxidative degradation of polyamide reverse osmosis membrane—accelerated ageing with hypochlorite exposure. J. Membr. Sci. 347, 159–164 (2010).

    CAS  Google Scholar 

  • 27.

    Huang, K. et al. Reactivity of the polyamide membrane monomer with free chlorine: reaction kinetics, mechanisms, and the role of chloride. Environ. Sci. Technol. 53, 8167–8176 (2019).

    CAS  Article  Google Scholar 

  • 28.

    Do, V. T., Tang, C. Y., Reinhard, M. & Leckie, J. O. Degradation of polyamide nanofiltration and reverse osmosis membranes by hypochlorite. Environ. Sci. Technol. 46, 852–859 (2012).

    CAS  Article  Google Scholar 

  • 29.

    Xu, G. R., Wang, J. N. & Li, C. J. Strategies for improving the performance of the polyamide thin film composite (PA-TFC) reverse osmosis (RO) membranes: surface modifications and nanoparticles incorporations. Desalination 328, 83–100 (2013).

    CAS  Article  Google Scholar 

  • 30.

    Asadollahi, M., Bastani, D. & Musavi, S. A. Enhancement of surface properties and performance of reverse osmosis membranes after surface modification: a review. Desalination 420, 330–383 (2017).

    CAS  Article  Google Scholar 

  • 31.

    Park, H., Freeman, B. D., Zhang, Z., Sankir, M. & McGrath, J. E. Highly chlorine-tolerant polymers for desalination. Angew. Chem. Int. Ed. 47, 6019–6024 (2008).

    CAS  Article  Google Scholar 

  • 32.

    Law, S. K. A., Minich, T. M. & Levine, R. P. Covalent binding efficiency of the third and fourth complement proteins in relation to pH, nucleophilicity, and availability of hydroxyl groups. Biochemistry 23, 3267–3272 (1984).

    CAS  Article  Google Scholar 

  • 33.

    FILMTECTMReverse Osmosis Membranes Technical Manual Form No.45-D01696-en, Rev. 4, 2020; Cleaning procedures for FilmTec™ FT30 Elements (Dow, 2020); https://www.dupont.com/products/filmtecsw302514.html

  • 34.

    She, Q., Wang, R., Fane, A. G. & Tang, C. Y. Membrane fouling in osmotically driven membrane processes: a review. J. Membr. Sci. 499, 201–233 (2016).

    CAS  Article  Google Scholar 


  • Source: Resources - nature.com

    Phylogeny resolved, metabolism revealed: functional radiation within a widespread and divergent clade of sponge symbionts

    Geologists raise the speed limit for how fast continental crust can form