in

Hydrological limits to carbon capture and storage

  • 1.

    Statistical Review of World Energy 2018 (BP, 2018).

  • 2.

    Tong, D. et al. Targeted emission reductions from global super-polluting power plant units. Nat. Sustain. 1, 59–68 (2018).

    • Article
    • Google Scholar
  • 3.

    Oberschelp, C., Pfister, S., Raptis, C. E. & Hellweg, S. Global emission hotspots of coal power generation. Nat. Sustain. 2, 113–121 (2019).

    • Article
    • Google Scholar
  • 4.

    Paris Agreement (European Commission, 2015); https://go.nature.com/3auVx0C

  • 5.

    Davis, S. J. & Socolow, R. H. Commitment accounting of CO2 emissions. Environ. Res. Lett. 9, 084018 (2014).

    • Article
    • Google Scholar
  • 6.

    Pfeiffer, A., Hepburn, C., Vogt-Schilb, A. & Caldecott, B. Committed emissions from existing and planned power plants and asset stranding required to meet the Paris Agreement. Environ. Res. Lett. 13, 054019 (2018).

  • 7.

    Voisin, N. et al. Vulnerability of the US western electric grid to hydro-climatological conditions: how bad can it get? Energy 115, 1–12 (2016).

    • Article
    • Google Scholar
  • 8.

    Webster, M., Donohoo, P. & Palmintier, B. Water–CO2 trade-offs in electricity generation planning. Nat. Clim. Change 3, 1029–1032 (2013).

  • 9.

    Kyle, P. et al. Influence of climate change mitigation technology on global demands of water for electricity generation. Int. J. Greenhouse Gas Control 13, 112–123 (2013).

    • Article
    • Google Scholar
  • 10.

    Byers, E. A., Hall, J. W. & Amezaga, J. M. Electricity generation and cooling water use: UK pathways to 2050. Glob. Environ. Change 25, 16–30 (2014).

    • Article
    • Google Scholar
  • 11.

    Liu, L. et al. Water demands for electricity generation in the US: modeling different scenarios for the water–energy nexus. Technol. Forecast. Soc. Change 94, 318–334 (2015).

    • Article
    • Google Scholar
  • 12.

    Van Vliet, M. T., Wiberg, D., Leduc, S. & Riahi, K. Power-generation system vulnerability and adaptation to changes in climate and water resources. Nat. Clim. Change 6, 375–380 (2016).

    • Article
    • Google Scholar
  • 13.

    World Energy Outlook 2016 (International Energy Agency, 2016).

  • 14.

    Zhang, X. et al. China’s coal-fired power plants impose pressure on water resources. J. Clean. Prod. 161, 1171–1179 (2017).

    • Article
    • Google Scholar
  • 15.

    Miara, A. et al. Climate and water resource change impacts and adaptation potential for US power supply. Nat. Clim. Change 7, 793–798 (2017).

    • Article
    • Google Scholar
  • 16.

    Zhang, C., Zhong, L. & Wang, J. Decoupling between water use and thermoelectric power generation growth in China. Nat. Energy 3, 792–799 (2018).

    • Article
    • Google Scholar
  • 17.

    Van Vliet, M. T. et al. Vulnerability of US and European electricity supply to climate change. Nat. Clim. Change 2, 676–681 (2012).

    • Article
    • Google Scholar
  • 18.

    Turner, S. W. D., Voisin, N., Fazio, J., Hua, D. & Jourabchi, M. Compound climate events transform electrical power shortfall risk in the Pacific Northwest. Nat. Commun. 10, 8 (2019).

  • 19.

    Liu, L., Hejazi, M., Iyer, G. & Forman, B. A. Implications of water constraints on electricity capacity expansion in the United States. Nat. Sustain. 2, 206–213 (2019).

    • Article
    • Google Scholar
  • 20.

    Alkon, M. et al. Water security implications of coal-fired power plants financed through China’s Belt and Road Initiative. Energy Policy 132, 1101–1109 (2019).

    • Article
    • Google Scholar
  • 21.

    Wang, Y. et al. Vulnerability of existing and planned coal-fired power plants in developing Asia to changes in climate and water resources. Energy Environ. Sci. 12, 3164–3181 (2019).

  • 22.

    Rosa, L., Chiarelli, D. D., Rulli, M. C., Dell’Angelo, J. & D’Odorico, P. Global agricultural economic water scarcity. Sci. Adv. 6, eaaz6031 (2020).

    • Google Scholar
  • 23.

    D’Odorico, P. et al. The global food–energy–water nexus. Rev. Geophys. 56, 456–531 (2018).

    • Article
    • Google Scholar
  • 24.

    Tong, D. et al. Committed emissions from existing energy infrastructure jeopardize 1.5 °C climate target. Nature 572, 373–377 (2019).

  • 25.

    Cui, R. Y. et al. Quantifying operational lifetimes for coal power plants under the Paris goals. Nat. Commun. 10, 4759 (2019).

  • 26.

    Smit, B., Reimer, J. A., Oldenburg, C. M. & Bourg, I. C. Introduction to Carbon Capture and Sequestration (Imperial College Press, 2014).

  • 27.

    Bui, M. et al. Carbon capture and storage (CCS): the way forward. Energy Environ. Sci. 11, 1062–1176 (2018).

  • 28.

    Zhai, H. & Rubin, E. S. Water impacts of a low-carbon electric power future: assessment methodology and status. Curr. Sustain. Renew. Energy Rep. 2, 1–9 (2015).

    • CAS
    • Google Scholar
  • 29.

    Zhai, H. & Rubin, E. S. Performance and cost of wet and dry cooling systems for pulverized coal power plants with and without carbon capture and storage. Energy Policy 38, 5653–5660 (2010).

    • Article
    • Google Scholar
  • 30.

    Meldrum, J., Nettles-Anderson, S., Heath, G. & Macknick, J. Life cycle water use for electricity generation: a review and harmonization of literature estimates. Environ. Res. Lett. 8, 015031 (2013).

  • 31.

    Zhai, H., Rubin, E. S. & Versteeg, P. L. Water use at pulverized coal power plants with post-combustion carbon capture and storage. Environ. Sci. Technol. 45, 2479–2485 (2011).

  • 32.

    Tidwell, V. C., Malczynski, L. A., Kobos, P. H., Klise, G. T. & Shuster, E. Potential impacts of electric power production utilizing natural gas, renewables and carbon capture and sequestration on US freshwater resources. Environ. Sci. Technol. 47, 8940–8947 (2013).

    • CAS
    • Google Scholar
  • 33.

    Talati, S., Zhai, H. & Morgan, M. G. Water impacts of CO2 emission performance standards for fossil fuel-fired power plants. Environ. Sci. Technol. 48, 11769–11776 (2014).

  • 34.

    Sathre, R. et al. Spatially-explicit water balance implications of carbon capture and sequestration. Environ. Model. Softw. 75, 153–162 (2016).

    • Article
    • Google Scholar
  • 35.

    Eldardiry, H. & Habib, E. Carbon capture and sequestration in power generation: review of impacts and opportunities for water sustainability. Energy Sustain. Soc. 8, 6 (2018).

    • Article
    • Google Scholar
  • 36.

    Schakel, W., Pfister, S. & Ramírez, A. Exploring the potential impact of implementing carbon capture technologies in fossil fuel power plants on regional European water stress index levels. Int. J. Greenhouse Gas Control 39, 318–328 (2015).

  • 37.

    Byers, E. A., Hall, J. W., Amezaga, J. M., O’Donnell, G. M. & Leathard, A. Water and climate risks to power generation with carbon capture and storage. Environ. Res. Lett. 11, 024011 (2016).

  • 38.

    Integrated Environmental Control Model computer code and documentation (IECM, 2009); https://www.cmu.edu/epp/iecm/iecm_dl.html

  • 39.

    Rogelj, J. et al. in Special Report on Global Warming of 1.5°C (eds Masson-Delmotte, V. et al.) Ch. 2 (IPCC, WMO, 2018).

  • 40.

    Rochelle, G. T. Amine scrubbing for CO2 capture. Science 325, 1652–1654 (2009).

  • 41.

    Flörke, M., Schneider, C. & McDonald, R. I. Water competition between cities and agriculture driven by climate change and urban growth. Nat. Sustain. 1, 51–58 (2018).

    • Article
    • Google Scholar
  • 42.

    Rosa, L., Rulli, M. C., Davis, K. F. & D’Odorico, P. The water–energy nexus of hydraulic fracturing: a global hydrologic analysis for shale oil and gas extraction. Earth’s Future 6, 745–756 (2018).

    • Article
    • Google Scholar
  • 43.

    Rosa, L. et al. Closing the yield gap while ensuring water sustainability. Environ. Res. Lett. 13, 104002 (2018).

  • 44.

    Rosa, L., Chiarelli, D. D., Tu, C., Rulli, M. C. & D’Odorico, P. Global unsustainable virtual water flows in agricultural trade. Environ. Res. Lett. 14, 114001 (2019).

  • 45.

    World Energy Outlook 2015 (International Energy Agency, 2015).

  • 46.

    Powell, S., Liu, K., Liu, A., Li, W. & Hudson, J. Is China Consuming too Much Water to Make Electricity? (UBS Evidence Lab, 2016); https://neo.ubs.com/shared/d1k4sjYSwbRh/

  • 47.

    Pastor, A. V., Ludwig, F., Biemans, H., Hoff, H. & Kabat, P. Accounting for environmental flow requirements in global water assessments. Hydrol. Earth Syst. Sci. 18, 5041–5059 (2014).

    • Article
    • Google Scholar
  • 48.

    Global Coal Plant Tracker (Global Energy Monitor, accessed 18 April 2020); https://endcoal.org/global-coal-plant-tracker/

  • 49.

    Lohrmann, A., Farfan, J., Caldera, U., Lohrmann, C. & Breyer, C. Global scenarios for significant water use reduction in thermal power plants based on cooling water demand estimation using satellite imagery. Nat. Energy 4, 1040–1048 (2019).

    • Article
    • Google Scholar
  • 50.

    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    • Article
    • Google Scholar
  • 51.

    Grubert, E. A., Beach, F. C. & Webber, M. E. Can switching fuels save water? A life cycle quantification of freshwater consumption for Texas coal- and natural gas-fired electricity. Environ. Res. Lett. 7, 045801 (2012).

    • Article
    • Google Scholar
  • 52.

    Jordaan, S. M., Patterson, L. A. & Anadon, L. D. A spatially-resolved inventory analysis of the water consumed by the coal-to-gas transition of Pennsylvania. J. Clean. Prod. 184, 366–374 (2018).

    • Article
    • Google Scholar
  • 53.

    Rosa, L. & D’Odorico, P. The water–energy–food nexus of unconventional oil and gas extraction in the Vaca Muerta Play, Argentina. J. Clean. Prod. 207, 743–750 (2019).

    • Article
    • Google Scholar
  • 54.

    Sutanudjaja, E. H. et al. PCR-GLOBWB 2: a 5 arcmin global hydrological and water resources model. Geosci. Model Dev. 11, 2429–2453 (2018).

    • Article
    • Google Scholar
  • 55.

    Wanders, N., van Vliet, M. T., Wada, Y., Bierkens, M. F. & van Beek, L. P. High‐resolution global water temperature modeling. Water Resour. Res. 55, 2760–2778 (2019).

    • Article
    • Google Scholar
  • 56.

    Hoekstra, A. Y. & Mekonnen, M. M. The water footprint of humanity. Proc. Natl Acad. Sci. USA 109, 3232–3237 (2012).

  • 57.

    Richter, B. D., Davis, M. M., Apse, C. & Konrad, C. A presumptive standard for environmental flow protection. River Res. Appl. 28, 1312–1321 (2012).

    • Article
    • Google Scholar
  • 58.

    Davidson, C. L., Dooley, J. J. & Dahowski, R. T. Assessing the impacts of future demand for saline groundwater on commercial deployment of CCS in the United States. Energy Procedia 1, 1949–1956 (2009).

  • 59.

    Little, M.G. & Jackson, R. B. Potential impacts of leakage from deep CO2 geosequestration on overlying freshwater aquifers. Environ. Sci. Technol. 44, 9225–9232 (2010).

  • 60.

    Zhang, C., Anadon, L. D., Mo, H., Zhao, Z. & Liu, Z. Water–carbon trade-off in China’s coal power industry. Environ. Sci. Technol. 48, 11082–11089 (2014).

  • 61.

    Peer, R. A. & Sanders, K. T. The water consequences of a transitioning US power sector. Appl. Energy 210, 613–622 (2018).

    • Article
    • Google Scholar
  • 62.

    Macknick, J., Newmark, R., Heath, G. & Hallett, K. C. Operational water consumption and withdrawal factors for electricity generating technologies: a review of existing literature. Environ. Res. Lett. 7, 045802 (2012).

    • Article
    • Google Scholar
  • 63.

    Scanlon, B. R., Duncan, I. & Reedy, R. C. Drought and the water–energy nexus in Texas. Environ. Res. Lett. 8, 045033 (2013).

    • Article
    • Google Scholar
  • 64.

    Siegelman, R. L., Milner, P. J., Kim, E. J., Weston, S. C. & Long, J. R. Challenges and opportunities for adsorption-based CO2 capture from natural gas combined cycle emissions. Energy Environ. Sci. 12, 2161–2173 (2019).

  • 65.

    Davis, S. J. et al. Net-zero emissions energy systems. Science 360, eaas9793 (2018).

  • 66.

    Kätelhön, A., Meys, R., Deutz, S., Suh, S. & Bardow, A. Climate change mitigation potential of carbon capture and utilization in the chemical industry. Proc. Natl Acad. Sci. USA 116, 11187–11194 (2019).

  • 67.

    Boot-Handford, M. E. et al. Carbon capture and storage update. Energy Environ. Sci. 7, 130–189 (2014).

  • 68.

    Sanchez, D. L., Nelson, J. H., Johnston, J., Mileva, A. & Kammen, D. M. Biomass enables the transition to a carbon-negative power system across western North America. Nat. Clim. Change 5, 230–234 (2015).

  • 69.

    Realmonte, G. et al. An inter-model assessment of the role of direct air capture in deep mitigation pathways. Nat. Commun. 10, 3277 (2019).


  • Source: Resources - nature.com

    Hitchhiking, collapse, and contingency in phage infections of migrating bacterial populations

    Technique could enable cheaper fertilizer production