in

More green and less blue water in the Alps during warmer summers

  • 1.

    Weingartner, R. & Viviroli, D. Water resources in mountain regions: a methodological approach to assess the water balance in a highland-lowland-system. Hydrol. Process. 21, 578–585 (2007).

    • Article
    • Google Scholar
  • 2.

    Regional Climate Change and Adaptation: The Alps Facing the Challenge of Changing Water Resources (EEA, 2009).

  • 3.

    Viviroli, D., Dürr, H. H., Messerli, B., Meybeck, M. & Weingartner, R. Mountains of the world, water towers for humanity: typology, mapping, and global significance. Water Resour. Res. 43, W07447 (2007).

    • Article
    • Google Scholar
  • 4.

    Briffa, K. R., van der Schrier, G. & Jones, P. D. Wet and dry summers in Europe since 1750: evidence of increasing drought. Int. J. Climatol. 29, 1894–1905 (2009).

    • Article
    • Google Scholar
  • 5.

    Teuling, A. J. A hot future for European droughts. Nat. Clim. Change 8, 364–365 (2018).

    • Article
    • Google Scholar
  • 6.

    Water Scarcity and Droughts—In-Depth Assessment (European Commission, 2007).

  • 7.

    Brunetti, M. et al. Climate variability and change in the Greater Alpine Region over the last two centuries based on multi-variable analysis. Int. J. Climatol. 29, 2197–2225 (2009).

    • Article
    • Google Scholar
  • 8.

    Fatichi, S., Molnar, P., Mastrotheodoros, T. & Burlando, P. Diurnal and seasonal changes in near-surface humidity in a complex orography. J. Geophys. Res. 120, 2358–2374 (2015).

    • Google Scholar
  • 9.

    Duethmann, D. & Blöschl, G. Why has catchment evaporation increased in the past 40 years? A data-based study in Austria. Hydrol. Earth Syst. Sci. 22, 5143–5158 (2018).

    • Article
    • Google Scholar
  • 10.

    Beniston, M. et al. The European mountain cryosphere: a review of its current state, trends, and future challenges. Cryosphere 12, 759–794 (2018).

    • Article
    • Google Scholar
  • 11.

    Samaniego, L. et al. Anthropogenic warming exacerbates European soil moisture droughts. Nat. Clim. Change 8, 421–426 (2018).

    • Article
    • Google Scholar
  • 12.

    Fan, Y. et al. Hillslope hydrology in global change research and Earth system modeling. Water Resour. Res. 55, 1737–1772 (2019).

    • Article
    • Google Scholar
  • 13.

    Falkenmark, M. & Rockström, J. The new blue and green water paradigm: breaking new ground for water resources planning and management. J. Water Resour. Plan. Manag. 132, 129–132 (2006).

    • Article
    • Google Scholar
  • 14.

    Orth, R. & Destouni, G. Drought reduces blue-water fluxes more strongly than green-water fluxes in Europe. Nat. Commun. 9, 3602 (2018).

  • 15.

    Xu, C., McDowell, N. G., Sevanto, S. & Fisher, R. A. Our limited ability to predict vegetation dynamics under water stress. New Phytol. 200, 298–300 (2013).

    • Article
    • Google Scholar
  • 16.

    Fatichi, S., Pappas, C. & Ivanov, V. Y. Modeling plant–water interactions: an ecohydrological overview from the cell to the global scale. WIREs Water 3, 327–368 (2016).

    • Article
    • Google Scholar
  • 17.

    Jolly, W. M., Dobbertin, M., Zimmermann, N. E. & Reichstein, M. Divergent vegetation growth responses to the 2003 heat wave in the Swiss Alps. Geophys. Res. Lett. 32, L18409 (2005).

    • Article
    • Google Scholar
  • 18.

    Rigling, A. et al. Driving factors of a vegetation shift from Scots pine to pubescent oak in dry Alpine forests. Glob. Change Biol. 19, 229–240 (2013).

    • Article
    • Google Scholar
  • 19.

    Seneviratne, S. I. et al. Swiss prealpine Rietholzbach research catchment and lysimeter: 32 year time series and 2003 drought event. Water Resour. Res. 48, W06526 (2012).

    • Article
    • Google Scholar
  • 20.

    Laghari, A. N., Vanham, D. & Rauch, W. To what extent does climate change result in a shift in Alpine hydrology? A case study in the Austrian Alps. Hydrol. Sci. J. 57, 103–117 (2012).

    • Article
    • Google Scholar
  • 21.

    Mastrotheodoros, T. et al. Ecohydrological dynamics in the Alps: insights from a modelling analysis of the spatial variability. Ecohydrology 12, e2054 (2019).

    • Article
    • Google Scholar
  • 22.

    Fatichi, S. & Pappas, C. Constrained variability of modeled T:ET ratio across biomes. Geophys. Res. Lett. 44, 6795–6803 (2017).

    • Article
    • Google Scholar
  • 23.

    Teuling, A. J. et al. Contrasting response of European forest and grassland energy exchange to heatwaves. Nat. Geosci. 3, 722–727 (2010).

  • 24.

    Lin, Y. S. et al. Optimal stomatal behaviour around the world. Nat. Clim. Change 5, 459–464 (2015).

  • 25.

    Clark, D. B. et al. The Joint UK Land Environment Simulator (JULES), model description–part 2: carbon fluxes and vegetation dynamics. Geosci. Model Dev. 4, 701–722 (2011).

    • Article
    • Google Scholar
  • 26.

    Sheffield, J., Wood, E. F. & Roderick, M. L. Little change in global drought over the past 60 years. Nature 491, 435–438 (2012).

  • 27.

    Wood, E. F. et al. Hyperresolution global land surface modeling: meeting a grand challenge for monitoring Earth’s terrestrial water. Water Resour. Res. 47, W05301 (2011).

    • Article
    • Google Scholar
  • 28.

    Bierkens, M. F. P. et al. Hyper-resolution global hydrological modelling: what is next? Hydrol. Process. 29, 310–320 (2015).

    • Article
    • Google Scholar
  • 29.

    Ivanov, V. Y., Bras, R. L. & Vivoni, E. R. Vegetation-hydrology dynamics in complex terrain of semiarid areas: 2. Energy-water controls of vegetation spatiotemporal dynamics and topographic niches of favorability. Water Resour. Res. 44, W03430 (2008).

    • Google Scholar
  • 30.

    Teuling, A. J. et al. Evapotranspiration amplifies European summer drought. Geophys. Res. Lett. 40, 2071–2075 (2013).

    • Article
    • Google Scholar
  • 31.

    Manoli, G., Ivanov, V. Y. & Fatichi, S. Dry-season greening and water stress in Amazonia: the role of modeling leaf phenology. J. Geophys. Res. Biogeosci. 123, 1909–1926 (2018).

    • Article
    • Google Scholar
  • 32.

    Fatichi, S., Zeeman, M. J., Fuhrer, J. & Burlando, P. Ecohydrological effects of management on subalpine grasslands: from local to catchment scale. Water Resour. Res. 50, 148–164 (2014).

    • Article
    • Google Scholar
  • 33.

    Le Quéré, C. et al. Global carbon budget 2014. Earth Syst. Sci. Data 7, 47–85 (2015).

    • Article
    • Google Scholar
  • 34.

    Sitch, S. et al. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences 12, 653–679 (2015).

  • 35.

    Jung, M. et al. The FLUXCOM ensemble of global land–atmosphere energy fluxes. Sci. Data 6, 74 (2019).

    • Article
    • Google Scholar
  • 36.

    Dee, D. P. et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011).

    • Article
    • Google Scholar
  • 37.

    Della Chiesa, S. et al. Modelling changes in grassland hydrological cycling along an elevational gradient in the Alps. Ecohydrology 7, 1453–1473 (2014).

    • Article
    • Google Scholar
  • 38.

    Goulden, M. L. & Bales, R. C. Mountain runoff vulnerability to increased evapotranspiration with vegetation expansion. Proc. Natl Acad. Sci. USA 111, 14071–14075 (2014).

  • 39.

    Gobiet, A. et al. 21st century climate change in the European Alps—a review. Sci. Total Environ. 493, 1138–1151 (2014).

  • 40.

    Gilbert, J. M. & Maxwell, R. M. Contrasting warming and drought in snowmelt-dominated agricultural basins: revealing the role of elevation gradients in regional response to temperature change. Environ. Res. Lett. 13, 074023 (2018).

    • Article
    • Google Scholar
  • 41.

    Zappa, M. & Kan, C. Extreme heat and runoff extremes in the Swiss Alps. Nat. Hazards Earth Syst. Sci. 7, 375–389 (2007).

    • Article
    • Google Scholar
  • 42.

    Leibundgut, C. & Kohn, I. European traditional irrigation in transition part II: traditional irrigation in our time—decline, rediscovery and restoration perspectives. Irrig. Drain. 63, 294–314 (2014).

    • Article
    • Google Scholar
  • 43.

    Dobbertin, M. et al. The decline of Pinus sylvestris L. forests in the Swiss Rhone valley—a result of drought stress? Phyton 45, 153–156 (2005).

    • Google Scholar
  • 44.

    Maxwell, R. M. & Kollet, S. J. Interdependence of groundwater dynamics and land–energy feedbacks under climate change. Nat. Geosci. 1, 665–669 (2008).

  • 45.

    Fan, Y. Groundwater in the Earth’s critical zone: relevance to large-scale patterns and processes. Water Resour. Res. 51, 3052–3069 (2015).

    • Article
    • Google Scholar
  • 46.

    Bales, R. C. et al. Mechanisms controlling the impact of multi-year drought on mountain hydrology. Sci. Rep. 8, 690 (2018).

  • 47.

    Casty, C., Wanner, H., Luterbacher, J., Esper, J. & Böhm, R. Temperature and precipitation variability in the European Alps since 1500. Int. J. Climatol. 25, 1855–1880 (2005).

    • Article
    • Google Scholar
  • 48.

    Pal, J. S., Giorgi, F. & Bi, X. Consistency of recent European summer precipitation trends and extremes with future regional climate projections. Geophys. Res. Lett. 31, 20–23 (2004).

    • Article
    • Google Scholar
  • 49.

    Mastrotheodoros, T. et al. Linking plant functional trait plasticity and the large increase in forest water use efficiency. J. Geophys. Res. Biogeosci. 122, 2393–2408 (2017).

    • Article
    • Google Scholar
  • 50.

    Dupire, S., Curt, T. & Bigot, S. Spatio-temporal trends in fire weather in the French Alps. Sci. Total Environ. 595, 801–817 (2017).

  • 51.

    Maxwell, R. M. & Condon, L. E. Connections between groundwater flow and transpiration partitioning. Science 353, 377–380 (2016).

  • 52.

    Barnett, T. P., Adam, J. C. & Lettenmaier, D. P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438, 303–309 (2005).

  • 53.

    Fatichi, S. et al. Abiotic and biotic controls of soil moisture spatio-temporal variability and the occurrence of hysteresis. Water Resour. Res. 51, 3505–3524 (2015).

    • Article
    • Google Scholar
  • 54.

    Fatichi, S., Ivanov, V. Y. & Caporali, E. A mechanistic ecohydrological model to investigate complex interactions in cold and warm water-controlled environments: 1. Theoretical framework and plot-scale analysis. J. Adv. Model. Earth Syst. 4, M05002 (2012).

    • Google Scholar
  • 55.

    Wu, D. et al. Asymmetric responses of primary productivity to altered precipitation simulated by ecosystem models across three long-term grassland sites. Biogeosciences 15, 3421–3437 (2018).

    • Article
    • Google Scholar
  • 56.

    Sellers, P. J. et al. Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science 275, 502–509 (1997).

  • 57.

    Fatichi, S. & Leuzinger, S. Reconciling observations with modeling: the fate of water and carbon allocation in a mature deciduous forest exposed to elevated CO2. Agric. For. Meteorol. 174–175, 144–157 (2013).

    • Article
    • Google Scholar
  • 58.

    Loague, K., Heppner, C. S., Ebel, B. A. & VanderKwaak, J. E. The quixotic search for a comprehensive understanding of hydrologic response at the surface: Horton, Dunne, Dunton, and the role of concept-development simulation. Hydrol. Process. 24, 2499–2505 (2010).

    • Google Scholar
  • 59.

    Lee, H. S., Matthews, C. J., Braddock, R. D., Sander, G. C. & Gandola, F. A MATLAB method of lines template for transport equations. Environ. Model. Softw. 19, 603–614 (2004).

    • Article
    • Google Scholar
  • 60.

    Farquhar, G. D., von Caemmerer, S. & Berry, J. A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90 (1980).

  • 61.

    Collatz, G. J., Ball, J. T., Grivet, C. & Berry, J. A. Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration – a model that includes a laminar boundary – layer. Agric. For. Meteorol. 54, 107–136 (1991).

    • Article
    • Google Scholar
  • 62.

    Dai, Y., Dickinson, R. E. & Wang, Y. P. A two-big-leaf model for canopy temperature, photosynthesis, and stomatal conductance. J. Clim. 17, 2281–2299 (2004).

    • Article
    • Google Scholar
  • 63.

    Bonan, G. B. et al. Improving canopy processes in the Community Land Model version 4 (CLM4) using global flux fields empirically inferred from FLUXNET data. J. Geophys. Res. 116, G02014 (2011).

    • Article
    • Google Scholar
  • 64.

    Leuning, R. A critical appraisal of a combined stomatal-photosynthesis model for C3 plants. Plant Cell Environ. 18, 339–355 (1995).

  • 65.

    Krinner, G. et al. A dynamic global vegetation model for studies of the coupled atmosphere–biosphere system. Glob. Biogeochem. Cycles 19, GB1015 (2005).

  • 66.

    Kozlowski, T. T. & Pallardy, S. G. Physiology of Wood Plants (Academic, 1997).

  • 67.

    Arora, V. K. & Boer, G. J. A parameterization of leaf phenology for the terrestrial ecosystem component of climate models. Glob. Change Biol. 11, 39–59 (2005).

    • Article
    • Google Scholar
  • 68.

    Panagos, P., Van Liedekerke, M., Jones, A. & Montanarella, L. European Soil Data Centre: response to European policy support and public data requirements. Land Use Policy 29, 329–338 (2012).

    • Article
    • Google Scholar
  • 69.

    Tarboton, D. G. A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resour. Res. 33, 309–319 (1997).

    • Article
    • Google Scholar
  • 70.

    Hengl, T. et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).

  • 71.

    CORINE Land Cover 2006 (EEA, 2006).

  • 72.

    Isotta, F. A. et al. The climate of daily precipitation in the Alps: development and analysis of a high-resolution grid dataset from pan-Alpine rain-gauge data. Int. J. Climatol. 34, 1657–1675 (2014).

    • Article
    • Google Scholar
  • 73.

    Fatichi, S., Ivanov, V. Y. & Caporali, E. A mechanistic ecohydrological model to investigate complex interactions in cold and warm water-controlled environments. 2. Spatiotemporal analyses. J. Adv. Model. Earth Syst. 4, M05003 (2012).

    • Google Scholar
  • 74.

    Dilley, A. C. & O’Brien, D. M. Estimating downward clear sky long-wave irradiance at the surface from screen temperature and precipitable water. Q. J. R. Meteorol. Soc. 124, 1391–1401 (1998).

    • Article
    • Google Scholar
  • 75.

    Fatichi, S., Ivanov, V. Y. & Caporali, E. Simulation of future climate scenarios with a weather generator. Adv. Water Resour. 34, 448–467 (2011).

    • Article
    • Google Scholar
  • 76.

    Dunne, J. A., Saleska, S. R., Fischer, M. L. & Harte, J. Integrating experimental and gradient methods in ecological climate change research. Ecology 85, 904–916 (2004).

    • Article
    • Google Scholar
  • 77.

    Hall, D. K. & Riggs, G. A. MODIS/Terra Snow Cover 8-Day L3 Global 500m Grid, Version 6 MOD10A2 (NASA National Snow and Ice Data Center Distributed Active Archive Center, 2016); https://doi.org/10.5067/MODIS/MOD10A2.006


  • Source: Resources - nature.com

    Understanding combustion

    For cheaper solar cells, thinner really is better