in

The river–groundwater interface as a hotspot for arsenic release

  • 1.

    Fendorf, S., Michael, H. A. & van Geen, A. Spatial and temporal variations of groundwater arsenic in South and Southeast Asia. Science 328, 1123–1127 (2010).

    • Article
    • Google Scholar
  • 2.

    Winkel, L. H. et al. Arsenic pollution of groundwater in Vietnam exacerbated by deep aquifer exploitation for more than a century. Proc. Natl Acad. Sci. 108, 1246–1251 (2011).

    • Article
    • Google Scholar
  • 3.

    Postma, D. et al. Groundwater arsenic concentrations in Vietnam controlled by sediment age. Nat. Geosci. 5, 656–661 (2012).

    • Article
    • Google Scholar
  • 4.

    Berg, M. et al. Hydrological and sedimentary controls leading to arsenic contamination of groundwater in the Hanoi area, Vietnam: the impact of iron–arsenic ratios, peat, river bank deposits, and excessive groundwater abstraction. Chem. Geol. 249, 91–112 (2008).

    • Article
    • Google Scholar
  • 5.

    Radloff, K. et al. Reversible adsorption and flushing of arsenic in a shallow, Holocene aquifer of Bangladesh. Appl. Geochem. 77, 142–157 (2017).

    • Article
    • Google Scholar
  • 6.

    Neumann, R. B. et al. Anthropogenic influences on groundwater arsenic concentrations in Bangladesh. Nat. Geosci. 3, 46–52 (2010).

    • Article
    • Google Scholar
  • 7.

    van Geen, A. et al. Retardation of arsenic transport through a Pleistocene aquifer. Nature 501, 204–207 (2013).

    • Article
    • Google Scholar
  • 8.

    Khan, M. R. et al. Megacity pumping and preferential flow threaten groundwater quality. Nat. Commun. 7, 12833 (2016).

    • Article
    • Google Scholar
  • 9.

    Michael, H. A. & Khan, M. R. Impacts of physical and chemical aquifer heterogeneity on basin-scale solute transport: vulnerability of deep groundwater to arsenic contamination in Bangladesh. Adv. Water Resour. 98, 147–158 (2016).

    • Article
    • Google Scholar
  • 10.

    Stahl, M. O. et al. River bank geomorphology controls groundwater arsenic concentrations in aquifers adjacent to the Red River, Hanoi Vietnam. Water Resour. Res. 52, 6321–6334 (2016).

    • Article
    • Google Scholar
  • 11.

    McArthur, J., Ravenscroft, P., Safiulla, S. & Thirlwall, M. Arsenic in groundwater: testing pollution mechanisms for sedimentary aquifers in Bangladesh. Water Resour. Res. 37, 109–117 (2001).

    • Article
    • Google Scholar
  • 12.

    McArthur, J. et al. Natural organic matter in sedimentary basins and its relation to arsenic in anoxic ground water: the example of West Bengal and its worldwide implications. Appl. Geochem. 19, 1255–1293 (2004).

    • Article
    • Google Scholar
  • 13.

    Meharg, A. A. et al. Codeposition of organic carbon and arsenic in Bengal Delta aquifers. Environ. Sci. Technol. 40, 4928–4935 (2006).

    • Article
    • Google Scholar
  • 14.

    Postma, D. et al. Arsenic in groundwater of the Red River floodplain, Vietnam: controlling geochemical processes and reactive transport modeling. Geochim. Cosmochim. Acta 71, 5054–5071 (2007).

    • Article
    • Google Scholar
  • 15.

    Polizzotto, M. L., Kocar, B. D., Benner, S. G., Sampson, M. & Fendorf, S. Near-surface wetland sediments as a source of arsenic release to ground water in Asia. Nature 454, 505–509 (2008).

    • Article
    • Google Scholar
  • 16.

    Stuckey, J. W., Schaefer, M. V., Kocar, B. D., Benner, S. G. & Fendorf, S. Arsenic release metabolically limited to permanently water-saturated soil in Mekong Delta. Nat. Geosci. 9, 70–76 (2016).

    • Article
    • Google Scholar
  • 17.

    Berg, M. et al. Arsenic contamination of groundwater and drinking water in Vietnam: a human health threat. Environ. Sci. Technol. 35, 2621–2626 (2001).

    • Article
    • Google Scholar
  • 18.

    Harvey, C. F. et al. Arsenic mobility and groundwater extraction in Bangladesh. Science 298, 1602–1606 (2002).

    • Article
    • Google Scholar
  • 19.

    Horneman, A. et al. Decoupling of As and Fe release to Bangladesh groundwater under reducing conditions. Part 1: Evidence from sediment profiles. Geochim. Cosmochim. Acta 68, 3459–3473 (2004).

    • Article
    • Google Scholar
  • 20.

    Islam, F. S. et al. Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature 430, 68–71 (2004).

    • Article
    • Google Scholar
  • 21.

    Eiche, E. Arsenic Mobilization Processes in the Red River Delta, Vietnam: Towards a Better Understanding of the Patchy Distribution of Dissolved Arsenic in Alluvial Deposits (Karlsruher Mineralogische und Geochemische Hefte 37, KIT Scientific, 2009).

  • 22.

    Frei, F. Groundwater Dynamics and Arsenic Mobilization near Hanoi (Vietnam) Assessed Using Noble Gases and Tritium Diploma Thesis, ETH Swiss Federal Institute of Technology, Department of Environmental Sciences (2007).

  • 23.

    Eiche, E. et al. Origin and availability of organic matter leading to arsenic mobilisation in aquifers of the Red River Delta, Vietnam. Appl. Geochem. 77, 184–193 (2017).

    • Article
    • Google Scholar
  • 24.

    Postma, D. et al. Mobilization of arsenic and iron from Red River floodplain sediments, Vietnam. Geochim. Cosmochim. Acta 74, 3367–3381 (2010).

    • Article
    • Google Scholar
  • 25.

    Postma, D. et al. Fate of arsenic during Red River water infiltration into aquifers beneath Hanoi, Vietnam. Environ. Sci. Technol. 51, 838–845 (2017).

    • Article
    • Google Scholar
  • 26.

    Larsen, F. et al. Controlling geological and hydrogeological processes in an arsenic contaminated aquifer on the Red River flood plain, Vietnam. Appl. Geochem. 23, 3099–3115 (2008).

    • Article
    • Google Scholar
  • 27.

    McClain, M. E. et al. Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems 6, 301–312 (2003).

    • Article
    • Google Scholar
  • 28.

    Cheng, F. Y. & Basu, N. B. Biogeochemical hotspots: role of small water bodies in landscape nutrient processing. Water Resour. Res. 53, 5038–5056 (2017).

    • Article
    • Google Scholar
  • 29.

    Hedin, L. O. et al. Thermodynamic constraints on nitrogen transformations and other biogeochemical processes at soil–stream interfaces. Ecology 79, 684–703 (1998).

    • Google Scholar
  • 30.

    Kocar, B. D. & Fendorf, S. in Interdisciplinary Studies on Environmental Chemistry—Environmental Pollution and Ecotoxicology (eds Kawaguchi, M. et al.) 117–124 (TERRAPUB, 2012).

  • 31.

    Rathi, B., Neidhardt, H., Berg, M., Siade, A. & Prommer, H. Processes governing arsenic retardation on Pleistocene sediments: adsorption experiments and model‐based analysis. Water Resour. Res. 53, 4344–4360 (2017).

    • Article
    • Google Scholar
  • 32.

    Eiche, E. et al. Geochemical processes underlying a sharp contrast in groundwater arsenic concentrations in a village on the Red River delta, Vietnam. Appl. Geochem. 23, 3143–3154 (2008).

    • Article
    • Google Scholar
  • 33.

    van Geen, A. et al. Comparison of arsenic concentrations in simultaneously-collected groundwater and aquifer particles from Bangladesh, India, Vietnam, and Nepal. Appl. Geochem. 23, 3244–3251 (2008).

    • Article
    • Google Scholar
  • 34.

    Neidhardt, H. et al. Insights into arsenic retention dynamics of Pleistocene aquifer sediments by in situ sorption experiments. Water Res. 129, 123–132 (2018).

    • Article
    • Google Scholar
  • 35.

    van Geen, A. et al. Spatial variability of arsenic in 6000 tube wells in a 250 km2 area of Bangladesh. Water Resour. Res. 39, 1140 (2003).

    • Google Scholar
  • 36.

    McArthur, J. et al. How paleosols influence groundwater flow and arsenic pollution: a model from the Bengal Basin and its worldwide implication. Water Resour. Res. 44, W11411 (2008).

    • Article
    • Google Scholar
  • 37.

    Harbaugh, A. W. MODFLOW-2005, the US Geological Survey Modular Ground-water Model: The Ground-water Flow Process (US Department of the Interior, US Geological Survey, 2005).

  • 38.

    Prommer, H., Barry, D. A. & Zheng, C. MODFLOW/MT3DMS-based reactive multicomponent transport modeling. Ground Water 41, 247–257 (2003).

    • Article
    • Google Scholar
  • 39.

    Zheng, C. & Wang, P. P. MT3DMS: A Modular Three-dimensional Multispecies Transport Model for Simulation of Advection, Dispersion, and Chemical Reactions of Contaminants in Groundwater Systems; Documentation and User’s Guide (U.S. Army Corps of Engineers Document, 1999).

  • 40.

    Parkhurst, D. L. & Appelo, C. User’s Guide to PHREEQC (Version 2): A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations Report No. 99-4259 (USGS, 1999).

  • 41.

    Welter, D. E., White, J. T., Hunt, R. J. & Doherty, J. E. Approaches in Highly Parameterized Inversion—PEST++ Version 3, a Parameter ESTimation and Uncertainty Analysis Software Suite Optimized for Large Environmental Models Report No. 2328-7055 (USGS, 2015).

  • 42.

    Postma, D. & Jakobsen, R. Redox zonation: equilibrium constraints on the Fe(iii)/SO4-reduction interface. Geochim. Cosmochim. Acta 60, 3169–3175 (1996).

    • Article
    • Google Scholar
  • 43.

    Prommer, H., Tuxen, N. & Bjerg, P. L. Fringe-controlled natural attenuation of phenoxy acids in a landfill plume: integration of field-scale processes by reactive transport modeling. Environ. Sci. Technol. 40, 4732–4738 (2006).

    • Article
    • Google Scholar
  • 44.

    Sharma, L., Greskowiak, J., Ray, C., Eckert, P. & Prommer, H. Elucidating temperature effects on seasonal variations of biogeochemical turnover rates during riverbank filtration. J. Hydrol. 428, 104–115 (2012).

    • Article
    • Google Scholar
  • 45.

    Rawson, J. et al. Quantifying reactive transport processes governing arsenic mobility after injection of reactive organic carbon into a Bengal Delta aquifer. Environ. Sci. Technol. 51, 8471–8480 (2017).

    • Article
    • Google Scholar
  • 46.

    Schwertmann, U. Solubility and dissolution of iron oxides. Plant Soil 130, 1–25 (1991).

    • Article
    • Google Scholar
  • 47.

    Appelo, C. A. J., Van der Weiden, M. J. J., Tournassat, C. & Charlet, L. Surface complexation of ferrous iron and carbonate on ferrihydrite and the mobilization of arsenic. Environ. Sci. Technol. 36, 3096–3103 (2002).

  • 48.

    Dzombak, D. A. & Morel, F. M. Surface Complexation Modeling: Hydrous Ferric Oxide (John Wiley & Sons, 1990).

  • 49.

    Swedlund, P. J. & Webster, J. G. Adsorption and polymerisation of silicic acid on ferrihydrite, and its effect on arsenic adsorption. Water Res. 33, 3413–3422 (1999).

    • Article
    • Google Scholar

  • Source: Resources - nature.com

    A genetic toolbox for marine protists

    Uncovering spatial and ecological variability in gap size frequency distributions in the Canadian boreal forest