in

Alteration of coastal productivity and artisanal fisheries interact to affect a marine food web

[adace-ad id="91168"]
  • 1.

    Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived?. Nature 471, 51–57 (2011).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 2.

    McCauley, D. J. et al. Marine defaunation: Animal loss in the global ocean. Science 347, 1255641–1255641 (2015).

    PubMed  Article  CAS  Google Scholar 

  • 3.

    Chapin, F. S. III. et al. Consequences of changing biodiversity. Nature 405, 234–242 (2000).

    CAS  PubMed  Article  Google Scholar 

  • 4.

    Díaz, S., Fargione, J., Chapin, F. S. & Tilman, D. Biodiversity loss threatens human well-being. PLoS Biol. 4, e277 (2006).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 5.

    Worm, B. et al. Rebuilding global fisheries. Science 325, 578–585 (2009).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 6.

    Defeo, O. & Castilla, J. C. More than one bag for the world fishery crisis and keys for co-management successes in selected artisanal Latin American shellfisheries. Rev. Fish Biol. Fish. 15, 265–283 (2005).

    Article  Google Scholar 

  • 7.

    Pauly, D. & Zeller, D. Catch reconstructions reveal that global marine fisheries catches are higher than reported and declining. Nat. Commun. 7, 10244 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 8.

    Defeo, O. et al. Co-management in Latin American small-scale shellfisheries: Assessment from long-term case studies. Fish Fish. 17, 176–192 (2016).

    Article  Google Scholar 

  • 9.

    Gelcich, S. et al. Fishers’ perceptions on the Chilean coastal TURF system after two decades: Problems, benefits, and emerging needs. Bull. Mar. Sci. 93, 53–67 (2017).

    Article  Google Scholar 

  • 10.

    Castilla, J. C., Gelcich, S. & Defeo, O. Successes, lessons, and projections from experience in marine benthic invertebrate artisanal fisheries in Chile. In Fisheries Management (eds McClanahan, T. R. & Castilla, J. C.) 23–42 (Blackwell Publishing Ltd, Hoboken, 2007). https://doi.org/10.1002/9780470996072.ch2.

    Google Scholar 

  • 11.

    Gelcich, S. et al. Navigating transformations in governance of Chilean marine coastal resources. Proc. Natl. Acad. Sci. 107, 16794–16799 (2010).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 12.

    Kéfi, S. et al. Network structure beyond food webs: Mapping non-trophic and trophic interactions on Chilean rocky shores. Ecology 96, 291–303 (2015).

    Article  Google Scholar 

  • 13.

    Pérez-Matus, A. et al. Temperate rocky subtidal reef community reveals human impacts across the entire food web. Mar. Ecol. Prog. Ser. 567, 1–16 (2017).

    ADS  Article  Google Scholar 

  • 14.

    Pérez-Matus, A., Carrasco, S. A., Gelcich, S., Fernandez, M. & Wieters, E. A. Exploring the effects of fishing pressure and upwelling intensity over subtidal kelp forest communities in Central Chile. Ecosphere 8, e01808 (2017).

    Article  Google Scholar 

  • 15.

    Gelcich, S. et al. Territorial user rights for fisheries as ancillary instruments for marine coastal conservation in Chile: Gelcich et al. Conserv. Biol. 26, 1005–1015 (2012).

    PubMed  Article  Google Scholar 

  • 16.

    Oyanedel, R., Keim, A., Castilla, J. C. & Gelcich, S. Illegal fishing and territorial user rights in Chile: Illegal fishing. Conserv. Biol. 32, 619–627 (2018).

    PubMed  Article  Google Scholar 

  • 17.

    Donlan, C. J., Wilcox, C., Luque, G. M. & Gelcich, S. Estimating illegal fishing from enforcement officers. Sci. Rep. 10, 12478 (2020).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 18.

    Andreu-Cazenave, M., Subida, M. D. & Fernandez, M. Exploitation rates of two benthic resources across management regimes in central Chile: Evidence of illegal fishing in artisanal fisheries operating in open access areas. PLoS ONE 12, e0180012 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 19.

    Castilla, J. C. Coastal marine communities: Trends and perspectives from human-exclusion experiments. Trends Ecol. Evol. 14, 280–283 (1999).

    CAS  PubMed  Article  Google Scholar 

  • 20.

    Somero, G. N. The physiology of climate change: How potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. J. Exp. Biol. 213, 912–920 (2010).

    CAS  PubMed  Article  Google Scholar 

  • 21.

    Hoegh-Guldberg, O. & Bruno, J. F. The impact of climate change on the world’s marine ecosystems. Science 328, 1523–1528 (2010).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 22.

    Brose, U. et al. Climate change in size-structured ecosystems. Philos. Trans. R. Soc. B Biol. Sci. 367, 2903–2912 (2012).

    Article  Google Scholar 

  • 23.

    Doney, S. C. et al. Climate change impacts on marine ecosystems. Annu. Rev. Mar. Sci. 4, 11–37 (2012).

    ADS  Article  Google Scholar 

  • 24.

    Kwiatkowski, L., Aumont, O. & Bopp, L. Consistent trophic amplification of marine biomass declines under climate change. Glob. Change Biol. 25, 218–229 (2019).

    ADS  Article  Google Scholar 

  • 25.

    Bakun, A. Coastal ocean upwelling. Science 247, 198–201 (1990).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 26.

    Bakun, A., Field, D. B., Redondo-Rodriguez, A. & Weeks, S. J. Greenhouse gas, upwelling-favorable winds, and the future of coastal ocean upwelling ecosystems. Glob. Change Biol. 16, 1213–1228 (2010).

    ADS  Article  Google Scholar 

  • 27.

    Thiel, M. et al. The Humboldt current system of northern and central Chile: Oceanographic processes, ecological interactions and socioeconomic feedback. In Oceanography and Marine Biology Vol. 20074975 (eds Gibson, R. et al.) 195–344 (CRC Press, Boca Raton, 2007).

    Google Scholar 

  • 28.

    Morales, C., Hormazabal, S., Andrade, I. & Correa-Ramirez, M. Time-space variability of chlorophyll-a and associated physical variables within the region off central-southern Chile. Remote Sens. 5, 5550–5571 (2013).

    ADS  Article  Google Scholar 

  • 29.

    Aiken, C. M., Navarrete, S. A. & Pelegrí, J. L. Potential changes in larval dispersal and alongshore connectivity on the central Chilean coast due to an altered wind climate. J. Geophys. Res. 116, G04026 (2011).

    ADS  Article  Google Scholar 

  • 30.

    Blanchard, J. L. et al. Potential consequences of climate change for primary production and fish production in large marine ecosystems. Philos. Trans. R. Soc. B Biol. Sci. 367, 2979–2989 (2012).

    Article  Google Scholar 

  • 31.

    Testa, G., Masotti, I. & Farías, L. Temporal variability in net primary production in an upwelling area off central Chile (36°S). Front. Mar. Sci. 5, 179 (2018).

    Article  Google Scholar 

  • 32.

    Batten, S. D. et al. A global plankton diversity monitoring program. Front. Mar. Sci. 6, 321 (2019).

    Article  Google Scholar 

  • 33.

    Chust, G. et al. Biomass changes and trophic amplification of plankton in a warmer ocean. Glob. Change Biol. 20, 2124–2139 (2014).

    ADS  Article  Google Scholar 

  • 34.

    Weidberg, N. et al. Spatial shifts in productivity of the coastal ocean over the past two decades induced by migration of the Pacific Anticyclone and Bakun’s effect in the Humboldt Upwelling Ecosystem. Glob. Planet. Change 193, 103259 (2020).

    Article  Google Scholar 

  • 35.

    Aguirre, C., García-Loyola, S., Testa, G., Silva, D. & Farias, L. Insight into anthropogenic forcing on coastal upwelling off south-central Chile. Elem. Sci. Anth. 6, 59 (2018).

    Article  Google Scholar 

  • 36.

    Valdovinos, F. S. Mutualistic networks: Moving closer to a predictive theory. Ecol. Lett. 22, 1517–1534 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  • 37.

    Pascual, M. & Dunne, J. A. Ecological Networks: Linking Structure to Dynamics in Food Webs (Santa Fe Institute Studies on the Sciences of Complexity) (Oxford University Press, Oxford, 2006).

    Google Scholar 

  • 38.

    Dunne, J. A., Williams, R. J. & Martinez, N. D. Network structure and biodiversity loss in food webs: Robustness increases with connectance. Ecol. Lett. 5, 558–567 (2002).

    Article  Google Scholar 

  • 39.

    Curtsdotter, A. et al. Robustness to secondary extinctions: Comparing trait-based sequential deletions in static and dynamic food webs. Basic Appl. Ecol. 12, 571–580 (2011).

    Article  Google Scholar 

  • 40.

    Ramos-Jiliberto, R., Valdovinos, F. S., Moisset de Espanés, P. & Flores, J. D. Topological plasticity increases robustness of mutualistic networks: Interaction rewiring in mutualistic networks. J. Anim. Ecol. 81, 896–904 (2012).

    Article  Google Scholar 

  • 41.

    Valdovinos, F. S., Moisset de Espanés, P., Flores, J. D. & Ramos-Jiliberto, R. Adaptive foraging allows the maintenance of biodiversity of pollination networks. Oikos 122, 907–917 (2013).

    Article  Google Scholar 

  • 42.

    Allesina, S. & Pascual, M. Googling food webs: Can an eigenvector measure species’ importance for coextinctions?. PLoS Comput. Biol. 5, e1000494 (2009).

    ADS  MathSciNet  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 43.

    de Santana, C., Rozenfeld, A., Marquet, P. & Duarte, C. Topological properties of polar food webs. Mar. Ecol. Prog. Ser. 474, 15–26 (2013).

    ADS  Article  Google Scholar 

  • 44.

    Eklöf, A., Tang, S. & Allesina, S. Secondary extinctions in food webs: A Bayesian network approach. Methods Ecol. Evol. 4, 760–770 (2013).

    Article  Google Scholar 

  • 45.

    Staniczenko, P. P. A., Lewis, O. T., Jones, N. S. & Reed-Tsochas, F. Structural dynamics and robustness of food webs: Structural dynamics and robustness of food webs. Ecol. Lett. 13, 891–899 (2010).

    PubMed  Article  Google Scholar 

  • 46.

    Albert, R., Jeong, H. & Barabási, A. Error and attack tolerance of complex networks. Nature 406, 378–382 (2000).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 47.

    Ives, A. R. & Cardinale, B. J. Food–web interactions govern the resistance of communities after non-random extinctions. Nature 429, 174–177 (2004).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 48.

    Rebolledo, R., Navarrete, S. A., Kéfi, S., Rojas, S. & Marquet, P. A. An open-system approach to complex biological networks. SIAM J. Appl. Math. 79, 619–640 (2019).

    MathSciNet  Article  Google Scholar 

  • 49.

    McCann, K. S. The diversity–stability debate. Nature 405, 228–233 (2000).

    CAS  PubMed  Article  Google Scholar 

  • 50.

    Glaum, P., Cocco, V. & Valdovinos, F. S. Integrating economic dynamics into ecological networks: The case of fishery sustainability. Sci. Adv. 6, eaaz4891 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  • 51.

    Williams, R. J. Network 3D: Visualizing and modelling food webs and other complex networks. Microsoft Res. Camb. UK. http://research.microsoft.com/en-us/um/cambridge/groups/science/tools/network3d/network3d.htm (2010).

  • 52.

    Richard, J. W., Brose, U. & Martinez, N. D. Homage to Yodzis and Innes 1992: Scaling up feeding-based population dynamics to complex ecological networks. In From Energetics to Ecosystems: The Dynamics and Structure of Ecological Systems 37–51 (Springer, Berlin, 2006). https://doi.org/10.1007/978-1-4020-5337-5_2.

    Google Scholar 

  • 53.

    Boit, A., Martinez, N. D., Williams, R. J. & Gaedke, U. Mechanistic theory and modelling of complex food-web dynamics in Lake Constance: Mechanistic modelling of complex food web dynamics. Ecol. Lett. 15, 594–602 (2012).

    PubMed  Article  Google Scholar 

  • 54.

    Kuparinen, A., Boit, A., Valdovinos, F. S., Lassaux, H. & Martinez, N. D. Fishing-induced life-history changes degrade and destabilize harvested ecosystems. Sci. Rep. 6, 22245 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 55.

    Jackson, J. B. C. Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629–637 (2001).

    CAS  PubMed  Article  Google Scholar 

  • 56.

    Pauly, D. Fishing down marine food webs. Science 279, 860–863 (1998).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 57.

    Jordán, F., Okey, T. A., Bauer, B. & Libralato, S. Identifying important species: Linking structure and function in ecological networks. Ecol. Model. 216, 75–80 (2008).

    Article  Google Scholar 

  • 58.

    Castilla, J. C. & Fernandez, M. Small-scale benthic fisheries in Chile: On co-management and sustainable use of benthic invertebrates. Ecol. Appl. 8, S124–S132 (1998).

    Article  Google Scholar 

  • 59.

    Allesina, S., Bodini, A. & Pascual, M. Functional links and robustness in food webs. Philos. Trans. R. Soc. B Biol. Sci. 364, 1701–1709 (2009).

    Article  Google Scholar 

  • 60.

    de Visser, S. N., Freymann, B. P. & Olff, H. The Serengeti food web: Empirical quantification and analysis of topological changes under increasing human impact: Topological changes under human impact. J. Anim. Ecol. 80, 484–494 (2011).

    PubMed  Article  Google Scholar 

  • 61.

    Srinivasan, U. T., Dunne, J. A., Harte, J. & Martinez, N. D. Response of complex food webs to realistic extinction sequences. Ecology 88, 671–682 (2007).

    PubMed  Article  Google Scholar 

  • 62.

    Camus, P. A., Arancibia, P. A. & Ávila-Thieme, M. I. A trophic characterization of intertidal consumers on Chilean rocky shores. Rev. Biol. Mar. Oceanogr. 48, 431–450 (2013).

    Article  Google Scholar 

  • 63.

    Lopez, D. N., Camus, P. A., Valdivia, N. & Estay, S. A. High temporal variability in the occurrence of consumer–resource interactions in ecological networks. Oikos 126, 1699–1707 (2017).

    Article  Google Scholar 

  • 64.

    Arim, M. & Marquet, P. A. Intraguild predation: A widespread interaction related to species biology: Intraguild predation. Ecol. Lett. 7, 557–564 (2004).

    Article  Google Scholar 

  • 65.

    Teagle, H., Hawkins, S. J., Moore, P. J. & Smale, D. A. The role of kelp species as biogenic habitat formers in coastal marine ecosystems. J. Exp. Mar. Biol. Ecol. 492, 81–98 (2017).

    Article  Google Scholar 

  • 66.

    Vásquez, J. A. The brown seaweeds fishery in Chile. In Fisheries and Aquaculture in the Modern World (ed. Mikkola, H.) (InTech, London, 2016). https://doi.org/10.5772/62876.

    Google Scholar 

  • 67.

    Belmadani, A., Echevin, V., Codron, F., Takahashi, K. & Junquas, C. What dynamics drive future wind scenarios for coastal upwelling off Peru and Chile?. Clim. Dyn. 43, 1893–1914 (2014).

    Article  Google Scholar 

  • 68.

    Wang, Y., Luo, Y., Lu, J. & Liu, F. Changes in ENSO amplitude under climate warming and cooling. Clim. Dyn. 52, 1871–1882 (2019).

    Article  Google Scholar 

  • 69.

    Cai, W. et al. Increased variability of eastern Pacific El Niño under greenhouse warming. Nature 564, 201–206 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 70.

    Cai, W. et al. Increased frequency of extreme La Niña events under greenhouse warming. Nat. Clim. Change 5, 132–137 (2015).

    ADS  Article  Google Scholar 

  • 71.

    Fussmann, K. E., Schwarzmüller, F., Brose, U., Jousset, A. & Rall, B. C. Ecological stability in response to warming. Nat. Clim. Change 4, 206–210 (2014).

    ADS  Article  Google Scholar 

  • 72.

    Hays, G., Richardson, A. & Robinson, C. Climate change and marine plankton. Trends Ecol. Evol. 20, 337–344 (2005).

    PubMed  Article  Google Scholar 

  • 73.

    Jochum, M., Schneider, F. D., Crowe, T. P., Brose, U. & O’Gorman, E. J. Climate-induced changes in bottom-up and top-down processes independently alter a marine ecosystem. Philos. Trans. R. Soc. B Biol. Sci. 367, 2962–2970 (2012).

    Article  Google Scholar 

  • 74.

    Hallegraeff, G. M. A review of harmful algal blooms and their apparent global increase. Phycologia 32, 79–99 (1993).

    Article  Google Scholar 

  • 75.

    He, Q. & Silliman, B. R. Climate change, human impacts, and coastal ecosystems in the anthropocene. Curr. Biol. 29, R1021–R1035 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 76.

    Brown, C. J., Saunders, M. I., Possingham, H. P. & Richardson, A. J. Interactions between global and local stressors of ecosystems determine management effectiveness in cumulative impact mapping. Divers. Distrib. 20, 538–546 (2014).

    Article  Google Scholar 

  • 77.

    Crain, C. M., Kroeker, K. & Halpern, B. S. Interactive and cumulative effects of multiple human stressors in marine systems. Ecol. Lett. 11, 1304–1315 (2008).

    PubMed  Article  Google Scholar 

  • 78.

    Dunne, J. A. et al. The roles and impacts of human hunter-gatherers in North Pacific marine food webs. Sci. Rep. 6, 21179 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 79.

    Hale, K. R. S., Valdovinos, F. S. & Martinez, N. D. Mutualism increases diversity, stability, and function of multiplex networks that integrate pollinators into food webs. Nat. Commun. 11, 2182 (2020).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 80.

    Kéfi, S., Miele, V., Wieters, E. A., Navarrete, S. A. & Berlow, E. L. How structured is the entangled bank? The surprisingly simple organization of multiplex ecological networks leads to increased persistence and resilience. PLoS Biol. 14, e1002527 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 81.

    Miele, V., Guill, C., Ramos-Jiliberto, R. & Kéfi, S. Non-trophic interactions strengthen the diversity—Functioning relationship in an ecological bioenergetic network model. PLoS Comput. Biol. 15, e1007269 (2019).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 82.

    Morgan, S. G., Fisher, J. L., Miller, S. H., McAfee, S. T. & Largier, J. L. Nearshore larval retention in a region of strong upwelling and recruitment limitation. Ecology 90, 3489–3502 (2009).

    PubMed  Article  Google Scholar 

  • 83.

    Ospina-Alvarez, A., Weidberg, N., Aiken, C. M. & Navarrete, S. A. Larval transport in the upwelling ecosystem of central Chile: The effects of vertical migration, developmental time and coastal topography on recruitment. Prog. Oceanogr. 168, 82–99 (2018).

    ADS  Article  Google Scholar 

  • 84.

    Sakai, A. K. et al. The population biology of invasive species. Annu. Rev. Ecol. Syst. 32, 305–332 (2001).

    Article  Google Scholar 

  • 85.

    Thierry, A. et al. Adaptive foraging and the rewiring of size-structured food webs following extinctions. Basic Appl. Ecol. 12, 562–570 (2011).

    Article  Google Scholar 

  • 86.

    Valdovinos, F. S., Ramos-Jiliberto, R., Garay-Narváez, L., Urbani, P. & Dunne, J. A. Consequences of adaptive behaviour for the structure and dynamics of food webs: Adaptive behaviour in food webs. Ecol. Lett. 13, 1546–1559 (2010).

    Article  Google Scholar 

  • 87.

    Williams, R. J. Effects of network and dynamical model structure on species persistence in large model food webs. Theor. Ecol. 1, 141–151 (2008).

    Article  Google Scholar 

  • 88.

    Brose, U., Williams, R. J. & Martinez, N. D. Allometric scaling enhances stability in complex food webs. Ecol. Lett. 9, 1228–1236 (2006).

    PubMed  Article  Google Scholar 

  • 89.

    Menge, B. A. & Menge, D. N. L. Dynamics of coastal meta-ecosystems: The intermittent upwelling hypothesis and a test in rocky intertidal regions. Ecol. Monogr. 83, 283–310 (2013).

    Article  Google Scholar 

  • 90.

    Otto, S. B., Rall, B. C. & Brose, U. Allometric degree distributions facilitate food-web stability. Nature 450, 1226–1229 (2007).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 91.

    Berlow, E. L. et al. Simple prediction of interaction strengths in complex food webs. Proc. Natl. Acad. Sci. 106, 187–191 (2009).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 92.

    Jonsson, T., Kaartinen, R., Jonsson, M. & Bommarco, R. Predictive power of food web models based on body size decreases with trophic complexity. Ecol. Lett. 21, 702–712 (2018).

    PubMed  Article  Google Scholar 

  • 93.

    Hudson, L. N. & Reuman, D. C. A cure for the plague of parameters: constraining models of complex population dynamics with allometries. Proc. R. Soc. B Biol. Sci. 280, 20131901 (2013).

    Article  Google Scholar 

  • 94.

    Ávila-Thieme, M. I., Corcoran, D., Valdovinos, F. S., Navarrete, S. A. & Marquet, P. A. NetworkExtinction: Extinction Simulation in Food Webs. (R package version 0.1.3., 2018).

  • 95.

    Schneider, F. D., Brose, U., Rall, B. C. & Guill, C. Animal diversity and ecosystem functioning in dynamic food webs. Nat. Commun. 7, 12718 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 


  • Source: Ecology - nature.com

    Genomics helps to predict maladaptation to climate change

    How science can put the Sustainable Development Goals back on track