in

Ants modulate stridulatory signals depending on the behavioural context

[adace-ad id="91168"]
  • 1.

    Hölldobler, B. & Wilson, E. O. The Ants (Springer-Verlag, 1990).

    Google Scholar 

  • 2.

    Hölldobler, B. Multimodal signals in ant communication. Comp. Physiol. A 184, 129–141 (1999).

    Article  Google Scholar 

  • 3.

    Elias, D. O. & Mason, A. C. The role of wave and substrate heterogeneity in vibratory communication: Practical issues in studying the effect of vibratory environments in communication. In Studying Vibrational Communication (eds Cocroft, M. B. et al.) 215–247 (Springer, 2014).

    Google Scholar 

  • 4.

    Oberst, S., Lai, J. C. & Evans, T. A. Physical basis of vibrational behaviour: Channel properties, noise and excitation signal extraction. In Biotremology: Studying Vibrational Behavior (eds Hill, P. S. et al.) 53–78 (Springer, 2019).

    Google Scholar 

  • 5.

    Golden, T. M. J. & Hill, P. S. M. The evolution of stridulatory communication in ants, revisited. Insect. Soc. 63, 309–319 (2016).

    Article  Google Scholar 

  • 6.

    Hager, F. A., Kirchner, L. & Kirchner, W. H. Directional vibration sensing in the leafcutter ant Atta sexdens. Biol. Open 6, 1949–1952 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 7.

    Hunt, J. H. & Richard, F. J. Intracolony vibroacoustic communication in social insects. Insect. Soc. 60, 403–417 (2013).

    Article  Google Scholar 

  • 8.

    Cassill, D., Ford, K., Huynh, L., Shiffman, D. & Vinson, S. B. A study on abdominal wagging in the fire ant, Solenopsis invicta, with speculation on its meaning. J. Bioecon. 18, 159–167 (2016).

    Article  Google Scholar 

  • 9.

    Schönrogge, K., Barbero, F., Casacci, L. P., Settele, J. & Thomas, J. A. Acoustic communication within ant societies and its mimicry by mutualistic and socially parasitic myrmecophiles. Anim. Behav. 134, 249–256 (2017).

    Article  Google Scholar 

  • 10.

    Weber, N. A. Fungus-growing ants and their fungi. Ecology 38, 480–494 (1957).

    Article  Google Scholar 

  • 11.

    Weber, N. A. Gardening Ants, the Attines: Memoirs of the American Philosophical Society (American Philosophical Society, 1972).

    Google Scholar 

  • 12.

    Kweskin, M. P. Jigging in the fungus-growing ant Cyphomyrmex costatus: A response to collembolan garden invaders?. Insect. Soc. 51, 158–162 (2004).

    Article  Google Scholar 

  • 13.

    Markl, H. The evolution of stridulatory communication in ants. Proc. Int. Congress IUSSI 7, 258–265 (1973).

    Google Scholar 

  • 14.

    Hölldobler, B. & Der Maschwitz, U. Hochzeitsschwarm der Rossameise Camponotus herculeanus L. (Hymenoptera Formicidae). J. Comp. Physiol. A. 50, 551–568 (1965).

    Google Scholar 

  • 15.

    Hölldobler, B. Recruitment behavior in Camponotus socius (Hymenoptera Formicidae). J. Comp. Physiol. A. 75, 123–142 (1971).

    Google Scholar 

  • 16.

    Fuchs, S. An informational analysis of the alarm communication by drumming behavior in nests of carpenter ants (Camponotus, Formicidae, Hymenoptera). Behav. Ecol. Sociobiol. 1, 315–336 (1976).

    Article  Google Scholar 

  • 17.

    Kirchner, W. H. Acoustical Communication in Social Insects in Orientation and Communication in Arthropods 273–300 (Birkhäuser, 1997).

    Google Scholar 

  • 18.

    Menzel, T. O. & Marquess, J. R. The substrate vibration generating behavior of Aphaenogaster carolinensis (Hymenoptera: Formicidae). J. Insect. Behav. 21, 82–88 (2008).

    Article  Google Scholar 

  • 19.

    Markl, H. Die Verständigung durch stridulationssignale bei blattschneiderameisen. Z. Vgl. Physiol. 60, 103–150 (1968).

    Article  Google Scholar 

  • 20.

    Stuart, R. J. & Bell, P. D. Stridulation by workers of the ant, Leptothorax muscorum (Nylander) (Hymenoptera: Formicidae). Psyche 87, 199–210 (1980).

    Article  Google Scholar 

  • 21.

    Grasso, D. A., Priano, M., Pavan, G., Mori, A. & Le Moli, F. Stridulation in four species of Messor ants (Hymenoptera Formicidae). Ital. J. Zool. 67, 281–283 (2000).

    Article  Google Scholar 

  • 22.

    Obin, M. S. & Vander Meer, R. K. Gaster flagging by fire ants (Solenopsis spp.): Functional significance of venom dispersal behavior. J. Chem. Ecol. 11, 1757–1768 (1985).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 23.

    Appel, H. M. & Cocroft, R. B. Plants respond to leaf vibrations caused by insect herbivore chewing. Oecologia 175, 1257–1266 (2014).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 24.

    Hickling, R. & Brown, R. L. Analysis of acoustic communication by ants. J. Acoust. Soc. Am. 108, 1920–1929 (2000).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 25.

    Field, L. H. & Matheson, T. Chordotonal organs of insects. Adv. Insect. Phys. 27, 1–228 (1998).

    Article  Google Scholar 

  • 26.

    Masson, C. & Gabouriaut, D. Ultrastructure de l’organe de Johnston de la Fourmi Camponotus vagus (Hymenoptera Formicidae). Z. Zellforsch. Mikrosk. Anat. 140, 39–75 (1973).

    CAS  PubMed  Article  Google Scholar 

  • 27.

    Roces, F. & Tautz, J. Ants are deaf. J. Acoust. Soc. Am. 109, 3080–3082 (2001).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 28.

    Menzel, J. G. & Tautz, J. Functional morphology of the subgenual organ of the carpenter ant. Tissue Cell 26, 735–746 (1994).

    CAS  PubMed  Article  Google Scholar 

  • 29.

    Casacci, L. P. et al. Ant pupae employ acoustics to communicate social status in their colony’s hierarchy. Curr. Biol. 23, 323–327 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 30.

    Ferreira, R. S., Poteaux, C., Delabie, J. H. C., Fresneau, D. & Rybak, F. Stridulations reveal cryptic speciation in neotropical sympatric ants. PLoS ONE 5, e15323 (2010).

    ADS  Article  CAS  Google Scholar 

  • 31.

    Chiu, Y. K., Mankin, R. W. & Lin, C. C. Context-dependent stridulatory responses of Leptogenys kitteli (Hymenoptera: Formicidae) to social, prey, and disturbance stimuli. Ann. Entomol. Soc. Am. 104, 1012–1020 (2011).

    Article  Google Scholar 

  • 32.

    Hager, F. A. & Krausa, K. Acacia ants respond to plant-borne vibrations caused by mammalian browsers. Curr. Biol. 29, 717–725 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 33.

    Spangler, H. G. The transmission of ant stridulations through soil. Ann. Entomol. Soc. Am. 67, 458–460 (1974).

    Article  Google Scholar 

  • 34.

    Pielström, S. & Roces, F. Vibrational communication in the spatial organization of collective digging in the leaf-cutting ant Atta vollenweideri. Anim. Behav. 84, 743–752 (2012).

    Article  Google Scholar 

  • 35.

    Markl, H., Hoelldobler, B. & Hölldobler, T. Mating behavior and sound production in harvester ants (Pogonomyrmex Formicidae). Insect. Soc. 24, 191–212 (1977).

    Article  Google Scholar 

  • 36.

    Ferreira, R. S., Cros, E., Fresneau, D. & Rybak, F. Behavioural contexts of sound production in pachycondyla ants (Formicidae: Ponerinae). Acta Acust United. 100, 739–747 (2014).

    Article  Google Scholar 

  • 37.

    Roces, F. & Hölldobler, B. Use of stridulation in foraging leaf-cutting ants: Mechanical support during cutting or short-range recruitment signal?. Behav. Ecol. Sociobiol. 39, 293–299 (1996).

    Article  Google Scholar 

  • 38.

    Masters, W. M. Insect disturbance stridulation: its defensive role. Behav. Ecol. Sociobiol. 5, 187–200 (1979).

    Article  Google Scholar 

  • 39.

    Zhantiev, R. D. & Sulkanov, A. V. Sounds of ants of the genus Myrmica. Zool. Zhurnal 56, 1255–1258 (1977).

    Google Scholar 

  • 40.

    Barbero, F., Bonelli, S., Thomas, J. A., Balletto, E. & Schönrogge, K. Acoustical mimicry in a predatory social parasite of ants. J. Exp. Biol. 212, 4084–4090 (2009).

    CAS  PubMed  Article  Google Scholar 

  • 41.

    Riva, F., Barbero, F., Bonelli, S., Balletto, E. & Casacci, L. P. The acoustic repertoire of lycaenid butterfly larvae. Bioacoustics 26, 77–90 (2017).

    Article  Google Scholar 

  • 42.

    Fattorini, S., Maurizi, E. & Giulio, A. D. Interactional behaviors of the parasitic beetle Paussus favieri with its ant host Pheidole pallidula: the mimetic role of the acoustical signals. J. Insect Sci. https://doi.org/10.1111/1744-7917.12778 (2020).

    Article  Google Scholar 

  • 43.

    Ruiz, E., Martínez, M. H., Martínez, M. D. & Hernández, J. M. Morphological study of the stridulatory organ in two species of Crematogaster genus: Crematogaster scutellaris (Olivier 1792) and Crematogaster auberti (Emery 1869) (Hymenoptera Formicidae). Ann. Soc. Entomol. Fr. 42, 99–105 (2006).

    Article  Google Scholar 

  • 44.

    Castro, S., Álvarez, M. & Munguira, M. L. Morphology of the stridulatory organs of Iberian myrmicine ants (Hymenoptera Formicidae). Ital. J. Zool. 82, 387–397 (2015).

    Article  Google Scholar 

  • 45.

    Frizzi, F., Panichi, S., Rispoli, A., Masoni, A. & Santini, G. Spatial variation of the aggressive response towards conspecifics in the ant Crematogaster scutellaris (Hymenoptera Formicidae). Redia 97, 165–169 (2014).

    Google Scholar 

  • 46.

    Frizzi, F., Masoni, A., Ottonetti, L., Tucci, L. & Santini, G. Resource-dependent mutual association with sap-feeders and a high predation rate in the ant Crematogaster scutellaris: help or harm in olive pest control?. Biocontrol 65, 601–611 (2020).

    CAS  Article  Google Scholar 

  • 47.

    Masoni, A. et al. Pleometrotic colony foundation in the ant Crematogaster scutellaris (Hymenoptera: Formicidae): better be alone than in bad company. Myrmecol. News 25, 51–59 (2017).

    Google Scholar 

  • 48.

    Masoni, A., Frizzi, F., Turillazzi, S. & Santini, G. Making the right choice: how Crematogaster scutellaris queens choose to co-found in relation to nest availability. Insect. Soc. 66, 257–263 (2019).

    Article  Google Scholar 

  • 49.

    Masoni, A., Frizzi, F., Natali, C., Ciofi, C. & Santini, G. Mating frequency and colony genetic structure analyses reveal unexpected polygyny in the Mediterranean acrobat ant Crematogaster scutellaris. Ethol. Ecol. Evol. 32, 122–134 (2020).

    Article  Google Scholar 

  • 50.

    Markl, H. Vibrational Communication in Neuroethology and behavioral Physiology 332–353 (Springer-Verlag, 1983).

    Google Scholar 

  • 51.

    Markl, H. & Hölldobler, B. Recruitment and food-retrieving behavior in Novomessor (Formicidae, Hymenoptera). Behav. Ecol. Sociobiol. 4, 183–216 (1978).

    Article  Google Scholar 

  • 52.

    Sala, M., Casacci, L. P., Balletto, E., Bonelli, S. & Barbero, F. Variation in butterfly larval acoustics as a strategy to infiltrate and exploit host ant colony resources. PLoS ONE 9, e94341 (2014).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 53.

    Hedwig, B. Control of cricket stridulation by a command neuron: Efficacy depends on the behavioral state. J. Neurophysiol 83, 712–722 (2000).

    CAS  PubMed  Article  Google Scholar 

  • 54.

    Cocroft, R. B., Gogala, M., Hill, P. S. & Wessel, A. Studying Vibrational Communication Vol. III (Springer, 2014).

    Google Scholar 

  • 55.

    Roces, F. & Núñez, J. A. Information about food quality influences load-size selection in recruited leaf-cutting ants. Anim. Behav. 45, 135–143 (1993).

    Article  Google Scholar 

  • 56.

    Crist, T. O. & MacMahon, J. A. Harvester ant foraging and shrub-steppe seeds: Interactions of seed resources and seed use. Ecology 73(5), 1768–1779 (1992).

    Article  Google Scholar 

  • 57.

    Evans, T. A., Inta, R., Lai, J. C. S. & Lenz, M. Foraging vibration signals attract foragers and identify food size in the drywood termite, Cryptotermes secundus. Insect. Soc. 54, 374–382 (2007).

    Article  Google Scholar 

  • 58.

    Frizzi, F. et al. The rules of aggression: How genetic, chemical and spatial factors affect intercolony fights in a dominant species, the mediterranean acrobat ant Crematogaster scutellaris. PLoS ONE 10, e0137919 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 59.

    Hill, P. S. How do animals use substrate-borne vibrations as an information source?. Naturwissenschaften 96, 1355–1371 (2009).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 60.

    Michelsen, A. Physical Aspects of Vibrational Communication in Studying Vibrational Communication 199–213 (Springer, 2014).

    Google Scholar 

  • 61.

    Devetak, D. Sand-borne vibrations in prey detection and orientation of antlions. In Studying Vibrational Communication (eds Cocroft, M. B. et al.) 319–330 (Springer, 2014).

    Google Scholar 

  • 62.

    Casas, J., Magal, C. & Sueur, J. Dispersive and non-dispersive waves through plants: implications for arthropod vibratory communication. Proc. R. Soc. B 274, 1087–1092 (2007).

    PubMed  Article  PubMed Central  Google Scholar 

  • 63.

    Hughes, W. O. H. & Goulson, D. Polyethism and the importance of context in the alarm reaction of the grass-cutting ant, Atta capiguara. Behav. Ecol. Sociobiol. 49, 503–508 (2001).

    Article  Google Scholar 

  • 64.

    Norman, V. C., Pamminger, T. & Hughes, W. O. The effects of disturbance threat on leaf-cutting ant colonies: A laboratory study. Insect. Soc. 64, 75–85 (2017).

    CAS  Article  Google Scholar 

  • 65.

    Del-Claro, K. & Oliveira, P. S. Ant–homoptera interactions in a Neotropical Savanna: The honeydew-producing treehopper, Guayaquila xiphias (Membracidae), and its Associated Ant Fauna on Didymopanax vinosum (Araliaceae). Biotropica 31, 135–144 (1999).

    Google Scholar 

  • 66.

    Virant-Doberlet, M. & Cokl, A. Vibrational communication in insects. Neotrop. Entomol. 33, 121–134 (2004).

    Article  Google Scholar 

  • 67.

    Roces, F., Tautz, J. & Hölldobler, B. Stridulation in leaf-cutting ants: short-range recruitment through plant-borne vibrations. Naturwissenschaften 80, 521–524 (1993).

    ADS  Article  Google Scholar 

  • 68.

    Hager, F. A., Kirchner, L. & Kirchner, W. H. Directional vibration sensing in the leafcutter ant Atta sexdens. Biol. Open 6, 1949–1952 (2018).

    Article  CAS  Google Scholar 

  • 69.

    Charif, R. A., Waack, A. M. & Strickman, L. M. Raven Pro 1.4 User’s Manual (Cornell Laboratory of Ornithology, 2010).

    Google Scholar 

  • 70.

    Lê Cao, K. A., Boitard, S. & Besse, P. Sparse PLS discriminant analysis: Biologically relevant feature selection and graphical displays for multiclass problems. BMC Bioinform. 12, 248–253 (2011).

    Article  Google Scholar 

  • 71.

    Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).

    Google Scholar 

  • 72.

    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna (2019). http://www.R-project.org/.

  • 73.

    Rohart, F., Gautier, B., Singh, A. & Lê Cao, K. A. mixOmics: An R package for ‘omics feature selection and multiple data integration. PLoS Comput. Biol. 13, e1005752 (2017).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 74.

    Oksanen, J. et al. The vegan package. Commun. Ecol. Package 10, 719 (2007).

    Google Scholar 

  • 75.

    Kindt, R., & Kindt, M. R. Package ‘BiodiversityR’. Package for Community Ecology and Suitability Analysis, 2–11 (2019).

  • 76.

    Hothorn, T. et al. Package ‘multcomp’. Simultaneous Inference in General Parametric Models (Project for Statistical Computing, 2016).

    Google Scholar 

  • 77.

    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Genetic identity and genotype × genotype interactions between symbionts outweigh species level effects in an insect microbiome

    Study predicts the oceans will start emitting ozone-depleting CFCs