in

Assessment of leaf morphological, physiological, chemical and stoichiometry functional traits for understanding the functioning of Himalayan temperate forest ecosystem

[adace-ad id="91168"]
  • 1.

    Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 2.

    Lourens, P. & Frans, B. Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology 87, 1733–1743 (2006).

    Google Scholar 

  • 3.

    Domínguez, M. T. et al. Relationships between leaf morphological traits, nutrient concentrations and isotopic signatures for Mediterranean woody plant species and communities. Plant Soil 357, 407–424 (2012).

    Google Scholar 

  • 4.

    Tian, M., Yu, G., He, N. & Hou, J. Leaf morphological and anatomical traits from tropical to temperate coniferous forests Mechanisms and influencing factors. Sci. Rep. 6, 19703 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 5.

    Paź-Dyderska, S. et al. Leaf traits and aboveground biomass variability of forest understory herbaceous plant species. Ecosystems 23, 555–569 (2020).

    Google Scholar 

  • 6.

    Lusk, C. H. Leaf functional trait variation in a humid temperate forest, and relationships with juvenile tree light requirements. PeerJ 7, e6855 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 7.

    Liu, C., Li, Y., Xu, L., Chen, Z. & He, N. Variation in leaf morphological, stomatal, and anatomical traits and their relationships in temperate and subtropical forests. Sci. Rep. 9, 1–8 (2019).

    ADS 

    Google Scholar 

  • 8.

    Qin, J. & Shangguan, Z. Effects of forest types on leaf functional traits and their interrelationships of Pinus massoniana coniferous and broad-leaved mixed forests in the subtropical mountain, Southeastern China. Ecol. Evol. 9, 6922–6932 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 9.

    Smart, S. M. et al. Leaf dry matter content is better at predicting above-ground net primary production than specific leaf area. Funct. Ecol. 31, 1336–1344 (2017).

    Google Scholar 

  • 10.

    Osnas, J. L. D., Lichstein, J. W., Reich, P. B. & Pacala, S. W. Global leaf trait relationships: Mass, area, and the leaf economics spectrum. Science 340, 741–744 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 11.

    Pierce, S. et al. A global method for calculating plant CSR ecological strategies applied across biomes world-wide. Funct. Ecol. 31, 444–457 (2017).

    Google Scholar 

  • 12.

    Grime, J. P. Plant strategy theories: A comment on Craine (2005). J. Ecol. 95, 227–230 (2007).

    Google Scholar 

  • 13.

    Nam, K. J. & Lee, E. J. Variation in leaf functional traits of the Korean maple (Acer pseudosieboldianum) along an elevational gradient in a montane forest in Southern Korea. J. Ecol. Environ. 42, 33 (2018).

    Google Scholar 

  • 14.

    Li, Y. et al. Spatiotemporal variation in leaf size and shape in response to climate. J. Plant Ecol. 13, 87–96 (2020).

    Google Scholar 

  • 15.

    Liu, W., Zheng, L. & Qi, D. Variation in leaf traits at different altitudes reflects the adaptive strategy of plants to environmental changes. Ecol. Evol. 10, 8166–8175 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 16.

    Zhu, Z., Wang, X., Li, Y., Wang, G. & Guo, H. Predicting plant traits and functional types response to grazing in an alpine shrub meadow on the Qinghai-Tibet Plateau. Sci. China Earth Sci. 55, 837–851 (2012).

    ADS 

    Google Scholar 

  • 17.

    Wang, J. et al. Response of plant functional traits to grazing for three dominant species in alpine steppe habitat of the Qinghai-Tibet Plateau, China. Ecol. Res. 31, 515–524 (2016).

    Google Scholar 

  • 18.

    Negi, G. C. S. Leaf and bud demography and shoot growth in evergreen and deciduous trees of central Himalaya, India. Trees 20, 416–429 (2006).

    Google Scholar 

  • 19.

    Osnas, J. L. D. et al. Divergent drivers of leaf trait variation within species, among species, and among functional groups. PNAS 115, 5480–5485 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 20.

    Liu, C., Li, Y., Xu, L., Chen, Z. & He, N. Variation in leaf morphological, stomatal, and anatomical traits and their relationships in temperate and subtropical forests. Sci. Rep. 9, 5803 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Zobel, D. B. & Singh, S. P. Himalayan forests and ecological generalizations. Bioscience 47, 735–745 (1997).

    Google Scholar 

  • 22.

    Kattge, J. et al. TRY—A global database of plant traits. Glob. Change Biol. 17, 2905–2935 (2011).

    ADS 

    Google Scholar 

  • 23.

    Pérez-Harguindeguy, N. et al. New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. 61, 167 (2013).

    Google Scholar 

  • 24.

    Reich, P. B., Walters, M. B. & Ellsworth, D. S. From tropics to tundra: Global convergence in plant functioning. PNAS 94, 13730–13734 (1997).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 25.

    Güsewell, S. & Verhoeven, J. T. A. Litter N:P ratios indicate whether N or P limits the decomposability of graminoid leaf litter. Plant Soil 287, 131–143 (2006).

    Google Scholar 

  • 26.

    Niinemets, U. Is there a species spectrum within the world-wide leaf economics spectrum? Major variations in leaf functional traits in the Mediterranean sclerophyll Quercus ilex. New Phytol. 205, 79–96 (2015).

    PubMed 

    Google Scholar 

  • 27.

    Devi, A. F. & Garkoti, S. C. Variation in evergreen and deciduous species leaf phenology in Assam, India. Trees 27, 985–997 (2013).

    Google Scholar 

  • 28.

    Givnish, T. Adaptive significance of evergreen vs. deciduous leaves: Solving the triple paradox. Silva Fenn. 36, 703–743 (2002).

    Google Scholar 

  • 29.

    Liu, Y. et al. Does greater specific leaf area plasticity help plants to maintain a high performance when shaded?. Ann. Bot. 118, 1329–1336 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 30.

    Derroire, G., Powers, J. S., Hulshof, C. M., Varela, L. E. C. & Healey, J. R. Contrasting patterns of leaf trait variation among and within species during tropical dry forest succession in Costa Rica. Sci. Rep. 8, 285 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Bai, K., He, C., Wan, X. & Jiang, D. Leaf economics of evergreen and deciduous tree species along an elevational gradient in a subtropical mountain. AoB Plants 7, plv064. https://doi.org/10.1093/aobpla/plv064 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Ma, S. et al. Variations and determinants of carbon content in plants: A global synthesis. Biogeosciences 15, 693–702 (2018).

    ADS 
    CAS 

    Google Scholar 

  • 33.

    Singh, N. D. Leaf litter decomposition of evergreen and deciduous Dillenia species in humid tropics of north-east India. J. Trop. For. Sci. 14, 105–115 (2002).

    Google Scholar 

  • 34.

    Liang, X., Liu, S., Wang, H. & Wang, J. Variation of carbon and nitrogen stoichiometry along a chronosequence of natural temperate forest in northeastern China. J. Plant Ecol. 11, 339–350 (2018).

    Google Scholar 

  • 35.

    Lübbe, T., Schuldt, B. & Leuschner, C. Acclimation of leaf water status and stem hydraulics to drought and tree neighbourhood: Alternative strategies among the saplings of five temperate deciduous tree species. Tree Physiol. 37, 456–468 (2017).

    PubMed 

    Google Scholar 

  • 36.

    Young-Robertson, J. M., Bolton, W. R., Bhatt, U. S., Cristóbal, J. & Thoman, R. Deciduous trees are a large and overlooked sink for snowmelt water in the boreal forest. Sci. Rep. 6, 1–10 (2016).

    Google Scholar 

  • 37.

    Hogan, K. P., Smith, A. P. & Samaniego, M. Gas exchange in six tropical semi-deciduous forest canopy tree species during the wet and dry seasons. Biotropica 27, 324–333 (1995).

    Google Scholar 

  • 38.

    Keel, S. G., Pepin, S., Leuzinger, S. & Körner, C. Stomatal conductance in mature deciduous forest trees exposed to elevated CO2. Trees 21, 151 (2006).

    Google Scholar 

  • 39.

    Kosugi, Y. & Matsuo, N. Seasonal fluctuations and temperature dependence of leaf gas exchange parameters of co-occurring evergreen and deciduous trees in a temperate broad-leaved forest. Tree Physiol. 26, 1173–1184 (2006).

    PubMed 

    Google Scholar 

  • 40.

    Medlyn, B. E. et al. Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: A synthesis. New Phytol. 149, 247–264 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 41.

    Catovsky, S., Holbrook, N. M. & Bazzaz, F. A. Coupling whole-tree transpiration and canopy photosynthesis in coniferous and broad-leaved tree species. Can. J. For. Res. 32, 295–309 (2002).

    Google Scholar 

  • 42.

    Rawat, M., Arunachalam, K., Arunachalam, A., Alatalo, J. & Pandey, R. Associations of plant functional diversity with carbon accumulation in a temperate forest ecosystem in the Indian Himalayas. Ecol. Ind. 98, 861–868 (2019).

    Google Scholar 

  • 43.

    Weraduwage, S. M. et al. The relationship between leaf area growth and biomass accumulation in Arabidopsis thaliana. Front. Plant Sci. 6, 167 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Sirisampan, S., Hiyama, T., Takahashi, A., Hashimoto, T. & Fukushima, Y. Diurnal and seasonal variations of stomatal conductance in a secondary temperate forest. J. Jpn. Soc. Hydrol. Water Resour. 16, 113–130 (2003).

    Google Scholar 

  • 45.

    Ghimire, C. P. et al. Transpiration and stomatal conductance in a young secondary tropical montane forest: Contrasts between native trees and invasive understorey shrubs. Tree Physiol. 38, 1053–1070 (2018).

    PubMed 

    Google Scholar 

  • 46.

    Kirschbaum, M. U. F. & McMillan, A. M. S. Warming and elevated CO2 have opposing influences on transpiration. Which is more important?. Curr. For. Rep. 4, 51–71 (2018).

    Google Scholar 

  • 47.

    Saha, S., Rajwar, G. S. & Kumar, M. Soil properties along altitudinal gradient in Himalayan temperate forest of Garhwal region. Acta Ecol. Sin. 38, 1–8 (2018).

    ADS 

    Google Scholar 

  • 48.

    Raina, A. K. & Gupta, M. K. Soil characteristics in relation to vegetation and parent material under different forest covers in Kempty forest range, Uttarakhand. Indian Forester 135, 331–341 (2009).

    CAS 

    Google Scholar 

  • 49.

    Champion, S. H. G. & Seth, S. K. A Revised Survey of the Forest Types of India. (1968).

  • 50.

    Belluau, M. & Shipley, B. Linking hard and soft traits: Physiology, morphology and anatomy interact to determine habitat affinities to soil water availability in herbaceous dicots. PLoS ONE 13, e0193130 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Rita, A. et al. Coordination of morphological and physiological traits in naturally recruited Abies alba Mill. saplings: Insights from a structural equation modeling approach. Ann. For. Sci. 74, 49 (2017).

    Google Scholar 

  • 52.

    Kumar, U., Singh, P. & Boote, K. J. Chapter two—effect of climate change factors on processes of crop growth and development and yield of groundnut (Arachis hypogaea L.). In Advances in Agronomy Vol. 116 (ed. Sparks, D. L.) 41–69 (Academic Press, 2012).

    Google Scholar 

  • 53.

    Gratani, L., Pesoli, P. & Crescente, M. F. Relationship between photosynthetic activity and chlorophyll content in an isolated Quercus ilex L. tree during the year. Photosynthetica 35, 445–451 (1998).

    Google Scholar 

  • 54.

    Lin, H., Chen, Y., Zhang, H., Fu, P. & Fan, Z. Stronger cooling effects of transpiration and leaf physical traits of plants from a hot dry habitat than from a hot wet habitat. Funct. Ecol. 31, 2202–2211 (2017).

    Google Scholar 

  • 55.

    Damm, A., Haghighi, E., Paul-Limoges, E. & van der Tol, C. On the seasonal relation of sun-induced chlorophyll fluorescence and transpiration in a temperate mixed forest. Agric. For. Meteorol. 304–305, 108386 (2021).

    ADS 

    Google Scholar 

  • 56.

    Zhang, X. et al. Stomatal conductance bears no correlation with transpiration rate in wheat during their diurnal variation under high air humidity. PeerJ 8, e8927 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 57.

    Wang, C., Zhou, J., Xiao, H., Liu, J. & Wang, L. Variations in leaf functional traits among plant species grouped by growth and leaf types in Zhenjiang, China. J. For. Res. https://doi.org/10.1007/s11676-016-0290-6 (2016).

    Article 

    Google Scholar 

  • 58.

    Cornelissen, J. H. C., Castro Diez, P. & Hunt, R. Seedling growth, allocation and leaf attributes in a wide range of woody plant species and types. J. Ecol. 84, 755–765 (1996).

    Google Scholar 

  • 59.

    Zhang, S., Zhang, Y. & Ma, K. The association of leaf lifespan and background insect herbivory at the interspecific level. Ecology 98, 425–432 (2017).

    PubMed 

    Google Scholar 

  • 60.

    Cunningham, S., Summerhayes, B. & Westoby, M. Evolutionary divergences in leaf structure and chemistry, comparing rainfall and soil nutrient gradients. Ecol. Monogr. 69(4), 569–588. https://doi.org/10.1890/0012-9615(1999)069[0569:EDILSA]2.0.CO;2 (1999).

    Article 

    Google Scholar 

  • 61.

    Reich, P. B. et al. Generality of leaf trait relationships: A test across six biomes. Ecology 80, 1955–1969 (1999).

    Google Scholar 

  • 62.

    Fyllas, N. M. et al. Functional trait variation among and within species and plant functional types in mountainous Mediterranean forests. Front. Plant Sci. 11, 212 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 63.

    De Long, J. R. et al. Relationships between plant traits, soil properties and carbon fluxes differ between monocultures and mixed communities in temperate grassland. J. Ecol. 107, 1704–1719 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    A tool to speed development of new solar cells

    Commensal Pseudomonas protect Arabidopsis thaliana from a coexisting pathogen via multiple lineage-dependent mechanisms