in

Flight performance and the factors affecting the flight behaviour of Philaenus spumarius the main vector of Xylella fastidiosa in Europe

[adace-ad id="91168"]
  • 1.

    EFSA. Effectiveness of in planta control measures for Xylella fastidiosa. EFSA J. 17(5). https://doi.org/10.2903/j.efsa.2019.5666 (2019).

  • 2.

    Hopkins, D. L. Xylella fastidiosa: Xylem-limited bacterial pathogen of plants. Annu. Rev. Phytopathol. 27(1), 271–290. https://doi.org/10.1146/annurev.py.27.090189.001415 (1989).

    Article 

    Google Scholar 

  • 3.

    Saponari, M., Boscia, D., Nigro, F. & Martelli, G. P. Identification of Dna sequences related to Xylella fastidiosa in oleander, almond and olive trees exhibiting leaf scorch symptoms in Apulia (southern Italy). J. Plant Pathol. 95(3), 668. https://doi.org/10.4454/JPP.V95I3.035 (2013).

    Article 

    Google Scholar 

  • 4.

    EPPO. Xylella fastidiosa in EPPO region. EPPO Bulletin. 49(2) (2019).

  • 5.

    Fierro, A., Liccardo, A. & Porcelli, F. A lattice model to manage the vector and the infection of the Xylella fastidiosa on olive trees. Sci. Rep. 9, 8723. https://doi.org/10.1038/s41598-019-44997-4 (2019).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 6.

    Saponari, M., Giampetruzzi, A., Loconsole, G., Boscia, D. & Saldarelli, P. Xylella fastidiosa in olive in apulia: Where we stand. Phytopathology 109(2), 175–186. https://doi.org/10.1094/PHYTO-08-18-0319-FI (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 7.

    Mannino, M. R. et al. Horizon scanning for plant health: Report on 2017–2020 activities. EFSA Support. Publ. https://doi.org/10.2903/sp.efsa.2021.EN-2010 (2021).

    Article 

    Google Scholar 

  • 8.

    EFSA. Scientific opinion on the risks to plant health posed by Xylella fastidiosa in the EU territory, with the identification and evaluation of risk reduction options. EFSA J. 13(1), 3989. https://doi.org/10.2903/j.efsa.2015.3989 (2015).

  • 9.

    Cornara, D. et al. An overview on the worldwide vectors of Xylella fastidiosa. Entomol. Gen. 39(3–4), 157–181. https://doi.org/10.1127/entomologia/2019/0811 (2019).

    Article 

    Google Scholar 

  • 10.

    Finke, D. L. Contrasting the consumptive and non-consumptive cascading effects of natural enemies on vector-borne pathogens. Entomol. Exp. Appl. 144, 45–55. https://doi.org/10.1111/j.1570-7458.2012.01258.x (2012).

    Article 

    Google Scholar 

  • 11.

    Martini, X., Hoffmann, M., Coy, M. R., Stelinski, L. L. & Pelz-Stelinski, K. S. Infection of an insect vector with a bacterial plant pathogen increases its propensity for dispersal. PLoS ONE 10(6), 1–16. https://doi.org/10.1371/journal.pone.0129373 (2015).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Almeida, R. P. P. et al. Addressing the new global threat of Xylella fastidiosa. Phytopathology 109(2), 172–174. https://doi.org/10.1094/PHYTO-12-18-0488-FI (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 13.

    Cornara, D., Bosco, D. & Fereres, A. Philaenus spumarius: When an old acquaintance becomes a new threat to European agriculture. J. Pest. Sci. 91(3), 957–972. https://doi.org/10.1007/s10340-018-0966-0 (2018).

    Article 

    Google Scholar 

  • 14.

    Halkka, O., Raatikainen, M., Vasarainen, A. & Heinonen, L. Ecology and ecological genetics of Philaenus spumarius (L.) (Homoptera). Ann. Zool. Fenn. 4, 1–18 (1967).

    Google Scholar 

  • 15.

    Lavigne, R. Biology of Philaenus leucophthalmus (L.) in Massachusetts. J. Econ. Entomol. 52(5), 904–907. https://doi.org/10.1093/jee/52.5.904 (1959).

    Article 

    Google Scholar 

  • 16.

    Ossiannilsson, F. The Auchenorrhyncha (Homoptera) of Fennoscandia and Denmark. Part 2: The families Cicadidae, Cercopidae, Membracidae, and Cicadellidae (excl. Deltocephalinae). Fauna Entomol. Scand. 7(2), 223–593 (1981).

    Google Scholar 

  • 17.

    Weaver, C. R. The seasonal behavior of meadow spittlebug and its relation to a control method. J. Econ. Entomol. 44(3), 350–353. https://doi.org/10.1093/jee/44.3.350 (1951).

    MathSciNet 
    CAS 
    Article 

    Google Scholar 

  • 18.

    Weaver, C. R. & King, D. R. Meadow spittlebug, Philaenus leucophthalmus (L.). Research Bulletin; Ohio Agricultural Experiment Station. (ed. Wooster, OH, USA, 1954).

  • 19.

    Drosopoulos, S. & Asche, M. Biosystematic studies on the spittlebug genus Philaenus with the description of a new species. Zool. J. Linn. Soc. 101(2), 169–177. https://doi.org/10.1111/j.1096-3642.1991.tb00891.x (2008).

    Article 

    Google Scholar 

  • 20.

    Grant, J. F., Lambdin, P. L. & Folium, R. A. Infestation levels and seasonal incidence of the meadow spittlebug (Homoptera: cercopidae) on musk thistle in Tennessee. J. Agric. Urban Entomol. 15, 83–91 (1998).

    Google Scholar 

  • 21.

    Halkka, O. Equilibrium populations of Philaenus spumarius L. Nature 193(4810), 93–94. https://doi.org/10.1038/193093a0 (1962).

    ADS 
    Article 

    Google Scholar 

  • 22.

    Freeman, J. A. Studies in the distribution of insects by Aerial currents. J. Anim. Ecol. 14, 128 (1945).

    Article 

    Google Scholar 

  • 23.

    Reynolds, D. R., Chapman, J. W. & Stewart, A. J. A. Windborne migration of Auchenorrhyncha (Hemiptera) over Britain. Eur. J. Entomol. 114, 554–564. https://doi.org/10.14411/eje.2017.070 (2017).

    Article 

    Google Scholar 

  • 24.

    Gutierrez, A. P., Nix, H. A., Havenstein, D. E. & Moore, P. A. The ecology of Aphis Craccivora Koch and subterranean clover stunt virus in south-east Australia. III. A regional perspective of the phenology and migration of the Cowpea Aphid. J. Appl. Ecol. 11(1), 21–35. https://doi.org/10.2307/2402002 (1974).

    Article 

    Google Scholar 

  • 25.

    Pienkowski, R. L. & Medler, J. T. Synoptic weather conditions associated with long-range movement of the potato leafhopper, Empoasca fabae, into Wisconsin. Ann. Entomol. Soc. Am. 57(5), 588–591. https://doi.org/10.1093/aesa/57.5.588 (1964).

    Article 

    Google Scholar 

  • 26.

    Drake, V. A. Radar observations of moths migrating in a nocturnal low-level jet. Ecol. Entomol. 10(3), 259–265. https://doi.org/10.1111/j.1365-2311.1985.tb00722.x (1985).

    Article 

    Google Scholar 

  • 27.

    Wallin, J. R. & Loonan, D. V. Low-level jet winds, aphid vectors, local weather, and barley yellow dwarf virus outbreaks. Phytopathology 61(9), 1068. https://doi.org/10.1094/PHYTO-61-1068 (1971).

    Article 

    Google Scholar 

  • 28.

    Sedlacek, J. D. & Freytag, P. H. Aspects of the field biology of the Blackfaced Leafhopper (Homoptera: Cicadellidae) in corn and pastures in Kentucky. J. Econ. Entomol. 79(3), 605–613. https://doi.org/10.1093/jee/79.3.605 (1986).

    Article 

    Google Scholar 

  • 29.

    Zhu, M., Radcliffe, E. B., Ragsdale, D. W., MacRae, I. V. & Seeley, M. W. Low-level jet streams associated with spring aphid migration and current season spread of potato viruses in the U.S. northern Great Plains. Agric. For. Meteorol. 138(1–4), 192–202. https://doi.org/10.1016/j.agrformet.2006.05.001 (2006).

    ADS 
    Article 

    Google Scholar 

  • 30.

    Bodino, N. et al. Dispersal of Philaenus spumarius (Hemiptera: Aphrophoridae), a vector of Xylella fastidiosa, in olive grove and meadow agroecosystems. Environ. Entomol. https://doi.org/10.1093/ee/nvaa140 (2020).

    Article 
    PubMed Central 

    Google Scholar 

  • 31.

    Lago, C. et al. Dispersal of Neophilaenus campestris, a vector of Xylella fastidiosa, from olive groves to over-summering hosts. J. Appl. Entomol. https://doi.org/10.1111/jen.12888 (2021).

    Article 

    Google Scholar 

  • 32.

    Minter, M. et al. The tethered flight technique as a tool for studying life-history strategies associated with migration in insects. Ecol. Entomol. 43(4), 397–411. https://doi.org/10.1111/een.12521 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 33.

    Ávalos-Masó, J. A., Martí-Campoy, A. & Soto, T. A. Study of the flying ability of Rhynchophorus ferrugineus (Coleoptera: Dryophthoridae) adults using a computer-monitored flight mill. Bull. Entomol. Res. 104(4), 462–470. https://doi.org/10.1017/S0007485314000121 (2014).

    Article 

    Google Scholar 

  • 34.

    Yu, E. Y., Gassmann, A. J. & Sappington, T. W. Using flight mills to measure flight propensity and performance of western corn rootworm, diabrotica virgifera virgifera (Leconte). J. Vis. Exp. 152, e59196. https://doi.org/10.3791/59196 (2019).

    Article 

    Google Scholar 

  • 35.

    Riley, J. R., Downham, M. C. A. & Cooter, R. J. Comparison of the performance of Cicadulina leafhoppers on flight mills with that to be expected in free flight. Entomol. Exp. Appl. 83(3), 317–322. https://doi.org/10.1046/j.1570-7458.1997.00186.x (1997).

    Article 

    Google Scholar 

  • 36.

    Zhang, Y., Wang, L., Wu, K., Wyckhuys, K. A. G. & Heimpel, G. E. Flight performance of the Soybean Aphid, Aphis glycines (Hemiptera: Aphididae) under different temperature and humidity regimens. Environ. Entomol. 37(2), 301–306. https://doi.org/10.1603/0046-225X(2008)37[301:FPOTSA]2.0.CO;2 (2008).

    Article 
    PubMed 

    Google Scholar 

  • 37.

    Cheng, Y., Luo, L., Jiang, X. & Sappington, T. Synchronized oviposition triggered by migratory flight intensifies larval outbreaks of beet. PLoS ONE https://doi.org/10.1371/journal.pone.0031562 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Jones, C. M. et al. Genomewide transcriptional signatures of migratory flight activity in a globally invasive insect pest. Mol. Ecol. 24(19), 4901–4911. https://doi.org/10.1111/mec.13362 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    White, S. M., Bullock, J. M., Hooftman, D. A. P. & Chapman, D. S. Modelling the spread and control of Xylella fastidiosa in the early stages of invasion in Apulia, Italy. Biol. Invasions 19(6), 1825–1837. https://doi.org/10.1007/s10530-017-1393-5 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 40.

    Jones, V. P., Naranjo, S. E. & Smith, T. J. Insect ecology and behavior: Laboratory flight mill studies. Accessed 22 July 2021. (2010). http://entomology.tfrec.wsu.edu/VPJ_Lab/Flight-Mill

  • 41.

    Martí-Campoy, A. et al. Design of a computerised flight mill device to measure the flight potential of different insects. Sensors (Switzerland) 16(4), 485. https://doi.org/10.3390/s16040485 (2016).

    ADS 
    Article 

    Google Scholar 

  • 42.

    Kees, A. M., Hefty, A. R., Venette, R. C., Seybold, S. J. & Aukema, B. H. Flight capacity of the walnut twig beetle (coleoptera: Scolytidae) on a laboratory flight mill. Environ. Entomol. 46(3), 633–641. https://doi.org/10.1093/ee/nvx055 (2017).

    Article 
    PubMed 

    Google Scholar 

  • 43.

    Morente, M. et al. Distribution and relative abundance of insect vectors of Xylella fastidiosa in olive groves of the Iberian peninsula. Insects 9(4), 175. https://doi.org/10.3390/insects9040175 (2018).

    Article 
    PubMed Central 

    Google Scholar 

  • 44.

    Morente, M., Cornara, D., Moreno, A. & Fereres, A. Continuous indoor rearing of Philaenus spumarius, the main European vector of Xylella fastidiosa. J. Appl. Entomol. 142(9), 901–904. https://doi.org/10.1111/jen.12553 (2018).

    Article 

    Google Scholar 

  • 45.

    Guthery, F. S., Burnham, K. P. & Anderson, D. R. Model Selection and multimodel inference: A practical information-theoretic approach. J. Wildl. Manag. 67, 655 (2003).

    Article 

    Google Scholar 

  • 46.

    Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R. (ed. Springer Sci. Bus. Media, 2009).

  • 47.

    Strona, G., Carstens, C. J. & Beck, P. S. A. Network analysis reveals why Xylella fastidiosa will persist in Europe. Sci. Rep. 7(1), 1–8. https://doi.org/10.1038/s41598-017-00077-z (2017).

    CAS 
    Article 

    Google Scholar 

  • 48.

    Whittaker, J. B. Density regulation in a population of Philaenus spumarius (L.) (Homoptera: Cercopidae). J. Anim. Ecol. 42(1), 163–172. https://doi.org/10.2307/3410 (1973).

    Article 

    Google Scholar 

  • 49.

    Wiman, N. G., Walton, V. M., Shearer, P. W., Rondon, S. I. & Lee, J. C. Factors affecting flight capacity of brown marmorated stink bug, Halyomorpha halys (Hemiptera: Pentatomidae). J. Pest Sci. 88(1), 37–47. https://doi.org/10.1007/s10340-014-0582-6 (2015).

    Article 

    Google Scholar 

  • 50.

    Strona, G. et al. Small world in the real world: Long distance dispersal governs epidemic dynamics in agricultural landscapes. Epidemics 30, 100384. https://doi.org/10.1016/j.epidem.2020.100384 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Irwin, M. E. & Tresh, J. M. Long-range aerial dispersal of cereal aphids as virus vectors in North America. Philos. Trans. R. Soc. London. B Biol. Sci. 321(1207), 421–446. https://doi.org/10.1098/rstb.1988.0101 (1988).

    ADS 
    Article 

    Google Scholar 

  • 52.

    Chapman, J. W., Reynolds, D. R. & Wilson, K. Long-range seasonal migration in insects: Mechanisms, evolutionary drivers and ecological consequences. Ecol. Lett. 18(3), 287–302. https://doi.org/10.1111/ele.12407 (2015).

    Article 
    PubMed 

    Google Scholar 

  • 53.

    Fereres, A., Irwin, M. E. & Kampmeier, G. E. Aphid movement: Process and consecuences. in Aphids as crop pests. (ed.2 Emden, H. F. van, Harrington, R.). 196–224. https://doi.org/10.1079/9781780647098.0196 (CABI Publishing, 2017).

  • 54.

    Petrovskii, S., Mashanova, A. & Jansen, V. A. A. Variation in individual walking behavior creates the impression of a Levy flight. PNAS 108, 8704–8707. https://doi.org/10.1073/pnas.1015208108 (2011).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 55.

    Okano, K. Sublethal effects of a neonicotinoid insecticide on the sharpshooter vectors of Xylella fastidiosa. Doctoral dissertation (UC Berkeley, 2009).

  • 56.

    Robinet, C., David, G. & Jactel, H. Modeling the distances traveled by flying insects based on the combination of flight mill and mark-release-recapture experiments. Ecol. Modell. 402, 85–92. https://doi.org/10.1016/j.ecolmodel.2019.04.006 (2019).

    Article 

    Google Scholar 

  • 57.

    Taylor, R. A. J., Bauer, L. S., Poland, T. M. & Windell, K. N. Flight performance of agrilus planipennis (Coleoptera: Buprestidae) on a flight mill and in free flight. J. Insect Behav. 23(2), 128–148. https://doi.org/10.1007/s10905-010-9202-3 (2010).

    Article 

    Google Scholar 

  • 58.

    Srygley, R. B. & Lorch, P. D. Coping with uncertainty: Nutrient deficiencies motivate insect migration at a cost to immunity. Integr. Comp. Biol. 53, 1002–1013. https://doi.org/10.1093/icb/ict047 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 59.

    Nilakhe, S. S. & Buainain, C. M. Observations on movement of spittlebug adults. Pesqui. Agropecuária Bras. Brasília 23, 123–134 (1988).

    Google Scholar 

  • 60.

    Neuman-Lee, L. A., Hopkins, G. R., Brodie, E. D. & French, S. S. Sublethal contaminant exposure alters behavior in a common insect: Important implications for trophic transfer. J. Environ. Sci. Heal. Part B Pestic. Food Contam. Wastes 48(6), 442–448. https://doi.org/10.1080/03601234.2013.761839 (2013).

    CAS 
    Article 

    Google Scholar 

  • 61.

    Wilson, D. M. The central nervous control of flight in a locust. J. Exp. Biol. 38(2), 471–490 (1961).

    Article 

    Google Scholar 

  • 62.

    Yamanaka, T., Tatsuki, S. & Shimada, M. Flight characteristics and dispersal patterns of fall webworm (Lepidoptera: Arctiidae) males. Environ. Entomol. 30(6), 1150–1157. https://doi.org/10.1603/0046-225X-30.6.1150 (2001).

    Article 

    Google Scholar 

  • 63.

    Blackmer, J. L., Hagler, J. R., Simmons, G. S. & Henneberry, T. J. Dispersal of Homalodisca vitripennis (Homoptera: Cicacellidae) from a point release site in citrus. Environ. Entomol. 35(6), 1617–1625. https://doi.org/10.1093/ee/35.6.1617 (2006).

    Article 

    Google Scholar 

  • 64.

    Bodino, N. et al. Phenology, seasonal abundance and stage-structure of spittlebug (Hemiptera: Aphrophoridae) populations in olive groves in Italy. Sci. Rep. 9(1), 1–17. https://doi.org/10.1038/s41598-019-54279-8 (2019).

    CAS 
    Article 

    Google Scholar 

  • 65.

    Minuz, R. L., Isidoro, N., Casavecchia, S., Burgio, G. & Riolo, P. Sex-dispersal differences of four phloem-feeding vectors and their relationship to wild-plant abundance in vineyard agroecosystems. J. Econ. Entomol. 106(6), 2296–2309. https://doi.org/10.1603/ec13244 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 66.

    Waloff, N. Dispersal by flight of leafhoppers (Auchenorrhyncha: Homoptera). J. Appl. Ecol. 10, 705 (1973).

    Article 

    Google Scholar 

  • 67.

    Johnson, C. G. Physiological factors in insect migration by flight. Nature 198(4879), 423–427. https://doi.org/10.1038/198423a0 (1963).

    ADS 
    Article 

    Google Scholar 

  • 68.

    Drake, V. A. & Gatehouse, A. G. Insect Migration. Tracking Resources through Space and Time. (ed. Cambridge University Press). 7(3) Cambridge UK. https://doi.org/10.1007/s10841-006-9039-4 (1995).

  • 69.

    Sappington, T. W. & Showers, W. B. Reproductive maturity, mating status, and long-duration flight behavior of agrotis ipsilon (Lepidoptera: Noctuidae) and the conceptual misuse of the oogenesis flight syndrome by entomologists. Environ. Entomol. 21(4), 677–688. https://doi.org/10.1093/ee/21.4.677 (1992).

    Article 

    Google Scholar 

  • 70.

    Zhao, X. C. et al. Does the onset of sexual maturation terminate the expression of migratory behaviour in moths? A study of the oriental armyworm, Mythimna separata. J Insect Physiol. 55(11), 1039–432009. https://doi.org/10.1016/j.jinsphys.2009.07.007 (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 71.

    Tigreros, N. & Davidowitz, G. Flight-fecundity tradeoffs in wing-monomorphic insects. Adv. Insect Phys. 56, 1–41. https://doi.org/10.1016/bs.aiip.2019.02.001 (2019).

    Article 

    Google Scholar 

  • 72.

    Drake, V. A. & Farrow, R. A. The influence of atmospheric structure and motions on insect migration. Ann. Rev. Entomol. 33(1), 183–210. https://doi.org/10.1146/annurev.en.33.010188.001151 (1988).

    Article 

    Google Scholar 

  • 73.

    Burt, P. J. A. & Pedgley, D. E. Nocturnal insect migration: Effects of local winds. Adv. Ecol. Res. 27, 61–92. https://doi.org/10.1016/S0065-2504(08)60006-9 (1997).

    Article 

    Google Scholar 

  • 74.

    Gordh, G. & McKirdy, S. The Handbook of Plant Biosecurity (Springer, 2014). https://doi.org/10.1007/978-94-007-7365-3

    Book 

    Google Scholar 


  • Source: Ecology - nature.com

    How deregulation, drought and increasing fire impact Amazonian biodiversity

    J-WAFS announces 2021 Solutions Grants for commercializing water and food technologies