in

Isotope data from amino acids indicate Darwin’s ground sloth was not an herbivore

[adace-ad id="91168"]
  • 1.

    Voss, R. S. & Emmons, L. H. Mammalian diversity in Neotropical lowland rainforests: A preliminary assessment. Bull. Am. Museum Nat. Hist. 230, 1–115 (1996).

    Google Scholar 

  • 2.

    Barnosky, A. D. et al. Variable impact of late-Quaternary megafaunal extinction in causing ecological state shifts in North and South America. Proc. Natl. Acad. Sci. U. S. A. 113, 856–861 (2016).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 3.

    Croft, D. A., Engelman, R. K., Dolgushina, T. & Wesley, G. Diversity and disparity of sparassodonts (Metatheria) reveal non-analogue nature of ancient South American mammalian carnivore guilds. Proc. R. Soc. B 285, 20172012 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 4.

    Fariña, R. A. Trophic relationships among Lujanian mammals. Evol. Theory 11, 125–134 (1996).

    Google Scholar 

  • 5.

    Fariña, R. A. & Blanco, R. E. Megatherium the Stabber. Proc. R. Soc. B Biol. Sci. 263, 1725–1729 (2006).

    ADS 

    Google Scholar 

  • 6.

    Tejada-Lara, J. V. et al. Body mass predicts isotope enrichment in herbivorous mammals. Proc. R. Soc. B Biol. Sci. 285, 20181020 (2018).

    Article 
    CAS 

    Google Scholar 

  • 7.

    de Muizon, C. & McDonald, H. G. An aquatic sloth from the Pliocene of Peru. Nature 375, 224–227 (1995).

    ADS 
    Article 

    Google Scholar 

  • 8.

    Croft, D. A. The middle Miocene (Laventan) Quebrada Honda Fauna, southern Bolivia and a description of its notoungulates. Palaeontology 50, 277–303 (2007).

    Article 

    Google Scholar 

  • 9.

    Boecklen, W. J., Yarnes, C. T., Cook, B. A. & James, A. C. On the use of stable isotopes in trophic ecology. Annu. Rev. Ecol. Evol. Syst. 42, 411–440 (2011).

    Article 

    Google Scholar 

  • 10.

    Lee-Thorp, J. J., Sealy, J. J. C. & van der Merwe, N. J. N. Stable carbon isotope ratio differences between bone collagen and bone apatite, and their relationship to diet. J. Archaeol. Sci. 32, 1459–1470 (1989).

    Google Scholar 

  • 11.

    Clementz, M. T., Fox-Dobbs, K., Wheatley, P. V., Koch, P. L. & Doak, D. F. Revisiting old bones: Coupled carbon isotope analysis of bioapatite and collagen as an ecological and palaeoecological tool. Geol. J. 44, 605–620 (2009).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Tejada, J. V. et al. Comparative isotope ecology of western Amazonian rainforest mammals. Proc. Natl. Acad. Sci. https://doi.org/10.1073/pnas.2007440117 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    Robinson, D. δ15N as an integrator of the nitrogen cycle. Trends Ecol. Evol. 16, 153–162 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 14.

    McMahon, K. W. & McCarthy, M. D. Embracing variability in amino acid δ15N fractionation: Mechanisms, implications, and applications for trophic ecology. Ecosphere 7, 1–26 (2016).

    Article 

    Google Scholar 

  • 15.

    McClelland, J. W. & Montoya, J. P. Trophic relationships and the nitrogen isotopic composition of amino acids in plankton. Ecology 83, 2173–2180 (2002).

    Article 

    Google Scholar 

  • 16.

    Chikaraishi, Y., Ogawa, N. O., Doi, H. & Ohkouchi, N. 15N/14N ratios of amino acids as a tool for studying terrestrial food webs: A case study of terrestrial insects (bees, wasps, and hornets ). Ecol. Res. 26, 835–844 (2011).

    Article 

    Google Scholar 

  • 17.

    Popp, B. N. et al. Insight into the trophic ecology of yellowfin tuna, Thunnus albacares, from compound- specific nitrogen isotope analysis of proteinaceous amino acids. In Stable Isotopes as Indicators of Ecological Change (eds Dawson, T. E. & Siegwolf, R. T. W.) 173–190 (Elsevier Inc., 2007).

    Google Scholar 

  • 18.

    Naito, Y. I., Honch, N. V., Chikaraishi, Y., Ohkouchi, N. & Yoneda, M. Quantitative evaluation of marine protein contribution in ancient diets based on nitrogen isotope ratios of individual amino acids in bone collagen: An investigation at the Kitakogane Jomon Site. Am. J. Phys. Anthropol. 143, 31–40 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 19.

    O’Connell, T. C. ‘Trophic’ and ‘source’ amino acids in trophic estimation: A likely metabolic explanation. Oecologia 184, 317–326 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 20.

    Chikaraishi, Y., Ogawa, N. O. & Ohkouchi, N. Further evaluation of the trophic level estimation based on nitrogen isotopic composition of amino acids. In Earth, Life, and Isotopes (eds Ohkouchi, N. et al.) 37–51 (Kyoto Universy Press, 2010).

    Google Scholar 

  • 21.

    Steffan, S. A. et al. Trophic hierarchies illuminated via amino acid isotopic analysis. PLoS ONE 8, 1–10 (2013).

    Article 
    CAS 

    Google Scholar 

  • 22.

    Chikaraishi, Y., Kashiyama, Y., Ogawa, N. O., Kitazato, H. & Ohkouchi, N. Metabolic control of nitrogen isotope composition of amino acids in macroalgae and gastropods: Implications for aquatic food web studies. Mar. Ecol. Prog. Ser. 342, 85–90 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 23.

    Naito, Y. I. et al. Ecological niche of Neanderthals from Spy Cave revealed by nitrogen isotopes of individual amino acids in collagen. J. Hum. Evol. 93, 82–90 (2016).

    PubMed 
    Article 

    Google Scholar 

  • 24.

    Nielsen, J. M., Popp, B. N. & Winder, M. Meta-analysis of amino acid stable nitrogen isotope ratios for estimating trophic position in marine organisms. Oecologia https://doi.org/10.1007/s00442-015-3305-7 (2015).

    Article 
    PubMed 

    Google Scholar 

  • 25.

    Décima, M., Landry, M. R. & Popp, B. N. Environmental perturbation effects on baseline δ15N values and zooplankton trophic flexibility in the southern California current ecosystem. Limnol. Oceanogr. 58, 624–634 (2013).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 26.

    Jarman, C. L. et al. Diet of the prehistoric population of Rapa Nui (Easter Island, Chile) shows environmental adaptation and resilience. Am. J. Phys. Anthropol. https://doi.org/10.1002/ajpa.23273 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Kendall, I. P. et al. Compound-specific δ15N values express differences in amino acid metabolism in plants of varying lignin content. Phytochemistry 161, 130–138 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 28.

    Ramirez, M. D., Besser, A. C., Newsome, S. D. & McMahon, K. W. Meta-analysis of primary producer amino acid δ15N values and their influence on trophic position estimation. Methods Ecol. Evol. https://doi.org/10.1111/2041-210X.13678 (2021).

    Article 

    Google Scholar 

  • 29.

    Hebert, C. E., Popp, B. N., Fernie, K. J., Rattner, B. A. & Wallsgrove, N. Amino acid specific stable nitrogen isotope values in avian tissues: Insights from captive American kestrels and wild herring gulls. Environ. Sci. Technol. 50, 12928–12937 (2016).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 30.

    Chikaraishi, Y. et al. Determination of aquatic food-web structure based on compound-specific nitrogen isotopic composition of amino acids. Limnol. Oceanogr. 7, 740–750 (2009).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Steffan, S. A. et al. Microbes are trophic analogs of animals. Proc. Natl. Acad. Sci. 112, 15119–15124 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 32.

    Kendall, I. P., Lee, M. R. F. & Evershed, R. P. The effect of trophic level on individual amino acid δ15N values in a terrestrial ruminant food web. Sci. Technol. Archaeol. Res. 3, 135–145 (2017).

    Google Scholar 

  • 33.

    Matthews, C. J. D., Ruiz-Cooley, R. I., Pomerleau, C. & Ferguson, S. H. Amino acid δ15N underestimation of cetacean trophic positions highlights limited understanding of isotopic fractionation in higher marine consumers. Ecol. Evol. 10, 3450–3462 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 34.

    Styring, A. K., Sealy, J. C. & Evershed, R. P. Resolving the bulk δ15N values of ancient human and animal bone collagen via compound-specific nitrogen isotope analysis of constituent amino acids. Geochim. Cosmochim. Acta 74, 241–251 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 35.

    Lorrain, A. et al. Nitrogen and carbon isotope values of individual amino acids: A tool to study foraging ecology of penguins in the Southern Ocean. Mar. Ecol. Prog. Ser. 391, 293–306 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 36.

    Lorrain, A. et al. Nitrogen isotopic baselines and implications for estimating foraging habitat and trophic position of yellowfin tuna in the Indian and Pacific Oceans. Deep. Res. Part II Top. Stud. Oceanogr. 113, 188–198 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 37.

    Hartman, G. Are elevated δ15N values in herbivores in hot and arid environments caused by diet or animal physiology?. Funct. Ecol. 25, 122–131 (2011).

    Article 

    Google Scholar 

  • 38.

    Hartman, G. & Danin, A. Isotopic values of plants in relation to water availability in the Eastern Mediterranean region. Oecologia 162, 837–852 (2010).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 39.

    Hansen, R. M. Shasta ground sloth food habits, Rampart Cave, Arizona. Paleobiology 4, 302–319 (1978).

    Article 

    Google Scholar 

  • 40.

    McDonald, H. G. & Morgan, G. S. Ground Sloths of New Mexico. Foss. Rec. 3 New. Mex. Museum Nat. Hist. Sci. Bull. 53, 652–663 (2011).

    Google Scholar 

  • 41.

    Poinar, H. N. Molecular coproscopy: Dung and diet of the extinct ground sloth Nothrotheriops shastensis. Science 281, 402–406 (1998).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 42.

    Clack, A. A., MacPhee, R. D. E. & Poinar, H. N. Mylodon darwinii DNA sequences from ancient fecal hair shafts. Ann. Anat. 194, 26–30 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 43.

    Höss, M., Dilling, A., Currant, A. & Pääbo, S. Molecular phylogeny of the extinct ground sloth Mylodon darwinii. Proc. Natl. Acad. Sci. U. S. A. 93, 181–185 (1996).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 44.

    Moore, D. M. Post-glacial vegetation in the South Patagonian territory of the giant ground sloth, Mylodon. Bot. J. Linn. Soc. 77, 177–202 (1978).

    Article 

    Google Scholar 

  • 45.

    Bargo, M. S., Toledo, N. & Vizcaino, S. F. Muzzle of South American Pleistocene ground sloths (Xenarthra, Tardigrada). J. Morphol. 267, 248–263 (2006).

    PubMed 
    Article 

    Google Scholar 

  • 46.

    Rasmussen, M. et al. Response to comment by Goldberg et al. on ‘DNA from Pre-Clovis human coprolites in Oregon, North America’. Science 325, 148 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 47.

    Janis, C. M. Correlations between craniodental anatomy and feeding in ungulates: Reciprocal illumination between living and fossil taxa. In Functional Morphology in Vertebrate Paleontology (ed. Thomason, J.) 76–98 (Cambridge U Press, 1995).

    Google Scholar 

  • 48.

    Clauss, M., Nunn, C., Fritz, J. & Hummel, J. Evidence for a tradeoff between retention time and chewing efficiency in large mammalian herbivores. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 154, 376–382 (2009).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 49.

    Vizcaino, S. F., Bargo, M. S. & Cassini, G. H. Dental occlusal surface area in relation to body mass, food habits and other biologic features in fossil xenarthrans. Ameghiniana 43, 11–26 (2006).

    Google Scholar 

  • 50.

    McNab, B. K. Energetics, population biology, and distribution of xenarthrans, living and extinct. In The Ecology of Arboreal Folivores 219–232 (Smithsonian Press, 1985).

  • 51.

    Davis, L. B. & Birkbak, R. C. On the transfer of energy in layers of fur. Biophys. J. 14, 249–268 (1974).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 52.

    Clauss, M. et al. The maximum attainable body size of herbivorous mammals: Morphophysiological constraints on foregut, and adaptations of hindgut fermenters. Oecologia 136, 14–27 (2003).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 53.

    Fariña, R. A., Czerwonogora, A. & Di Giacomo, M. Splendid oddness: Revisiting the curious trophic relationships of South American Pleistocene mammals and their abundance. An. Acad. Bras. Cienc. 86, 311–331 (2014).

    PubMed 
    Article 

    Google Scholar 

  • 54.

    Zhu, D. et al. The large mean body size of mammalian herbivores explains the productivity paradox during the Last Glacial Maximum. Nat. Ecol. Evol. 2, 640–649 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 55.

    Zimov, S. A., Zimov, N. S., Tikhonov, A. N. & Chapin, I. S. Mammoth steppe: A high-productivity phenomenon. Quat. Sci. Rev. 57, 26–45 (2012).

    ADS 
    Article 

    Google Scholar 

  • 56.

    Hannides, C. C. S., Popp, B. N., Landry, M. R. & Graham, B. S. Quantification of zooplankton trophic position in the North Pacific Subtropical Gyre using stable nitrogen isotopes. Limnol. Oceanogr. 54, 50–61 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Phytoplankton biodiversity and the inverted paradox

    Rover images confirm Jezero crater is an ancient Martian lake