in

Jurassic greenhouse ice-sheet fluctuations sensitive to atmospheric CO2 dynamics

[adace-ad id="91168"]
  • 1.

    Haq, B. U. Jurassic sea-level variations: a reappraisal. GSA Today 28, 4–10 (2017).

    Google Scholar 

  • 2.

    Sahagian, D., Pinous, O., Olferiev, A. & Zakharov, V. Eustatic curve for the Middle Jurassic–Cretaceous based on Russian platform and Siberian stratigraphy: zonal resolution. Am. Assoc. Pet. Geol. Bull. 80, 1433–1458 (1996).

    Google Scholar 

  • 3.

    Donnadieu, Y. et al. A mechanism for brief glacial episodes in the Mesozoic greenhouse. Paleoceanography 26, PA3212 (2011).

    Google Scholar 

  • 4.

    Korte, C. & Hesselbo, S. P. Shallow marine carbon and oxygen isotope and elemental records indicate icehouse–greenhouse cycles during the Early Jurassic. Paleoceanography 26, PA4219 (2011).

    Google Scholar 

  • 5.

    Dromart, G. et al. Ice age at the Middle–Late Jurassic transition? Earth Planet. Sci. Lett. 213, 205–220 (2003).

    Google Scholar 

  • 6.

    Price, G. D. The evidence and implications of polar ice during the Mesozoic. Earth Sci. Rev. 48, 183–210 (1999).

    Google Scholar 

  • 7.

    Rogov, M. A. & Zakharov, V. A. Jurassic and Lower Cretaceous glendonite occurrences and their implication for Arctic paleoclimate reconstructions and stratigraphy. Earth Sci. Front. 17, 345–347 (2010).

    Google Scholar 

  • 8.

    Teichert, B. M. A. & Luppold, F. W. Glendonites from an Early Jurassic methane seep—climate or methane indicators? Palaeogeogr. Palaeoclimatol. Palaeoecol. 390, 81–93 (2013).

    Google Scholar 

  • 9.

    Suan, G. et al. Polar record of Early Jurassic massive carbon injection. Earth Planet. Sci. Lett. 312, 102–113 (2011).

    Google Scholar 

  • 10.

    Brandt, K. Glacioeustatic cycles in the Early Jurassic? Neues Jahrb. Geol. Palaontol. Abh. 5, 257–274 (1986).

    Google Scholar 

  • 11.

    Woolfe, K. J. & Francis, J. E. An Early to Middle Jurassic glaciation-evidence from Allan Hills, Transantarctic Mountains. In Proc. 6th International Symposium on Antarctic Earth Sciences, Japan 652–653 (1991).

  • 12.

    Dera, G. & Donnadieu, Y. Modeling evidences for global warming, Arctic seawater freshening, and sluggish oceanic circulation during the early Toarcian anoxic event. Paleoceanography 27, PA2211 (2012).

    Google Scholar 

  • 13.

    Silva, R. C. & Duarte, L. V. Organic matter production and preservation in the Lusitanian Basin (Portugal) and Pliensbachian climatic hots snaps. Glob. Planet. Change 131, 24–34 (2015).

    Google Scholar 

  • 14.

    Gómez, J. J., Comas-Rengifo, M. J. & Goy, A. Paleoclimatic oscillations in the Pliensbachian (Early Jurassic) of the Asturian Basin (Northern Spain). Clim. Past 12, 1199–1274 (2016).

    Google Scholar 

  • 15.

    Suan, G. et al. Secular environmental precursors to early Toarcian (Jurassic) extreme climate changes. Earth Planet. Sci. 290, 448–458 (2010).

    Google Scholar 

  • 16.

    Fantasia, A. et al. Global versus local processes during the Pliensbachian–Toarcian transition at the Peniche GSSP, Portugal: a multi-proxy record. Earth Sci. Rev. 198, 2932 (2019).

    Google Scholar 

  • 17.

    Sell, B. et al. Evaluating the temporal link between the Karoo LIP and climatic–biologic events of the Toarcian Stage with high-precision U-Pb geochronology. Earth Planet. Sci. Lett. 408, 48–56 (2014).

    Google Scholar 

  • 18.

    Hesselbo, S. P. et al. Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event. Nature 406, 392–395 (2000).

    Google Scholar 

  • 19.

    Hesselbo, S. P., Jenkyns, H. C., Duarte, L. V. & Oliveira, L. C. V. Carbon-isotope record of the Early Jurassic (Toarcian) ocean anoxic event from fossil wood and marine carbonate (Lusitanian Basin, Portugal). Earth Planet. Sci. Lett. 253, 455–470 (2007).

    Google Scholar 

  • 20.

    Schubert, B. A. & Jahren, A. H. Incorporating the effects of photorespiration into terrestrial paleoclimate reconstruction. Earth Sci. Rev. 177, 637–642 (2018).

    Google Scholar 

  • 21.

    Miller, K. G., Wright, J. D. & Browning, J. V. Visions of ice sheets in a greenhouse world. Mar. Geol. 217, 215–231 (2005).

    Google Scholar 

  • 22.

    Gómez, J. J., Goy, A. & Canales, M. L. Seawater temperature and carbon isotope variations in belemnites linked to mass extinction during the Toarcian (Early Jurassic) in Central and Northern Spain. Comparison with other European sections. Palaeogeogr. Palaeoclimatol. Palaeoecol. 258, 28–58 (2008).

    Google Scholar 

  • 23.

    Rosales, I., Quesada, S. & Robles, S. Paleotemperature variations of Early Jurassic seawater recorded in geochemical trends of belemnites from the Basque–Cantabrian basin, northern Spain. Palaeogeogr. Palaeoclimatol. Palaeoecol. 203, 253–275 (2004).

    Google Scholar 

  • 24.

    van de Schootbrugge, B. et al. Early Jurassic climate change and the radiation of organic-walled phytoplankton in the Tethys Ocean. Paleobiology 31, 73–97 (2010).

    Google Scholar 

  • 25.

    Vera, E. I. & Césari, S. N. New species of conifer wood from the Baqueró Group (Early Cretaceous) of Patagonia. Ameghiniana 52, 468–471 (2015).

    Google Scholar 

  • 26.

    Wilson, J. P. et al. Dynamic Carboniferous tropical forests: new views of plant function and physiological forcing of climate. New Phytol. 215, 1333–1353 (2017).

    Google Scholar 

  • 27.

    Lomax, B. H., Lake, J. A., Leng, M. J. & Jardine, P. E. An experimental evaluation of the use of Δ13C as a proxy for palaeoatmospheric CO2. Geochim. Cosmochim. Acta 247, 162–174 (2019).

    Google Scholar 

  • 28.

    Tipple, B. J., Meyers, S. R. & Pagani, M. Carbon isotope ratio of Cenozoic CO2: a comparative evaluation of available geochemical proxies. Paleoceanography 25, PA3202 (2010).

    Google Scholar 

  • 29.

    Diefendorf, A. F., Freeman, K. H. & Wing, S. L. Distribution and carbon isotope patterns of diterpenoids and triterpenoids in modern temperate C3 trees and their geochemical substantial. Geochim. Cosmochim. Acta 85, 342–356 (2012).

    Google Scholar 

  • 30.

    Lenton, T. M., Daines, S. J. & Mills, B. J. W. COPSE reloaded: an improved model of biogeochemical cycling over Phanerozoic time. Earth Sci. Rev. 178, 1–28 (2018).

    Google Scholar 

  • 31.

    McElwain, J. C., Wade-Murphy, J. & Hesselbo, S. P. Changes in carbon dioxide during an oceanic anoxic event linked to intrusion into Gondwana coals. Nature 435, 479–482 (2005).

    Google Scholar 

  • 32.

    Ruebsam, W., Reolid, M. & Schwark, L. δ13C of terrestrial vegetation records Toarcian CO2 and climate gradients. Sci. Rep. 10, 117 (2020).

    Google Scholar 

  • 33.

    Huang, C. & Hesselbo, S. P. Pacing of the Toarcian oceanic anoxic event (Early Jurassic) from astronomical correlation of marine sections. Gondwana Res. 25, 1348–1356 (2014).

    Google Scholar 

  • 34.

    Fung, M. K., Katz, M. E., Miller, K. G., Browning, J. V. & Rosenthal, Y. Sequence stratigraphy, micropaleontology, and foraminiferal geochemistry, Bass River, New Jersey paleoshelf, USA: implications for Eocene ice-volume changes. Geosphere 15, 502–532 (2019).

    Google Scholar 

  • 35.

    Oerlemans, J. A model of the Antarctic ice sheet. Nature 297, 550–553 (1982).

    Google Scholar 

  • 36.

    Esch, M. B. & Herterich, K. A two-dimensional coupled atmosphere–ice sheet–continent model designed for paleoclimatic simulations. Ann. Glaciol. 14, 55–57 (1990).

    Google Scholar 

  • 37.

    Foster, G. L. & Rohling, E. J. Relationship between sea level and climate forcing by CO2 on geological timescales. Proc. Natl Acad. Sci. USA 110, 1209–1214 (2013).

    Google Scholar 

  • 38.

    Gasson, E., DeConto, R. M., Pollard, D. & Levy, R. H. Dynamic Antarctic ice sheet during the early to mid-Miocene. Proc. Natl Acad. Sci. USA 113, 3459–3464 (2016).

    Google Scholar 

  • 39.

    Booth, B. B. et al. Narrowing the range of future climate projections using historical observations of atmospheric CO2. J. Clim. 30, 3039–3053 (2017).

    Google Scholar 

  • 40.

    Hesselbo, S. P. & Pienkowski, G. Stepwise atmospheric carbon-isotope excursion during the Toarcian oceanic anoxic event (Early Jurassic, Polish Basin). Earth Planet. Sci. Lett. 301, 365–372 (2011).

    Google Scholar 

  • 41.

    Storm, M. S. et al. Orbital pacing and secular evolution of the Early Jurassic carbon cycle. Proc. Natl Acad. Sci. USA 117, 3974–3982 (2020).

    Google Scholar 

  • 42.

    Jenkyns, H. C. & Clayton, C. J. Lower Jurassic epicontinental carbonates and mudstones from England and Wales: chemostratigraphic signals and the early Toarcian anoxic event. Sedimentology 44, 687–706 (1997).

    Google Scholar 

  • 43.

    Hermoso, M., Minoletti, F. & Pellenard, P. Black shale deposition during Toarcian super-greenhouse driven by sea level. Clim. Past 9, 2703–2712 (2013).

    Google Scholar 

  • 44.

    Schouten, S., van Kaam-Peters, M. E., Rijpstra, W. I. C., Schoell, M. & Damste, J. S. S. Effects of an oceanic anoxic event on the stable carbonate isotopic composition of early Toarcian carbon. Am. J. Sci. 300, 1–22 (2000).

    Google Scholar 

  • 45.

    Sabatino, N. et al. Carbon-isotope records of the Early Jurassic (Toarcian) oceanic anoxic event from the Valdobia (Umbria-Marche Apennines) and Monte Mangart (Julian Alps) sections: palaeooceaogrpahic and stratigraphic implications. Sedimentology 56, 1307–1328 (2009).

    Google Scholar 

  • 46.

    Garbe, J., Albrecht, T., Levermann, A., Donges, J. & Winkelmann, R. The hysteresis of the Antarctic Ice Sheet. Nature 585, 538–544 (2020).

    Google Scholar 

  • 47.

    Suan, G., Mattioli, E., Pittet, B., Mailliot, S. & Lécuyer, C. Evidence for major environmental perturbation prior to and during the Toarcian (Early Jurassic) oceanic anoxic event form the Lusitanian Basin, Portugal. Paleoceanography 23, PA1202 (2008).

    Google Scholar 

  • 48.

    Müller, T. et al. New multiproxy record of the Jenkyns Event (also known as the Toarcian anoxic event) from the Mecsek Mountains (Hungary): differences, duration and drivers. Sedimentology 64, 66–86 (2017).

    Google Scholar 

  • 49.

    Ogg, J. G. & Hinnov, A. L. in The Geologic Time Scale 2012 (eds Gradstein, F. M. et al.) Ch. 26 (Elsevier, 2012).

  • 50.

    McCarroll, D. & Loader, N. J. Stable isotopes in tree rings. Quat. Sci. Rev. 23, 771–801 (2004).

    Google Scholar 

  • 51.

    Voelker, S. L. et al. A dynamic leaf gas-exchange strategy is conserved in woody plants under changing ambient CO2: evidence from carbon isotope discrimination in paleo and CO2 enrichment studies. Glob. Change Biol. 22, 889–902 (2016).

    Google Scholar 

  • 52.

    Tholen, D. & Zhu, X. G. The mechanistic basis of internal conductance: a theoretical analysis of mesophyll cell photosynthesis and CO2 diffusion. Plant Physiol. 156, 90–105 (2011).

    Google Scholar 

  • 53.

    Cui, Y. & Schubert, B. A. Quantifying the uncertainty of past pCO2 determined from changes in C3 plant carbon isotope fractionation. Geochim. Cosmochim. Acta 172, 127–138 (2016).

    Google Scholar 

  • 54.

    Schubert, B. A. & Jahren, A. H. The effect of atmospheric CO2 concentration on carbon isotope fractionation in C3 land plants. Geochim. Cosmochim. Acta 96, 29–43 (2012).

    Google Scholar 

  • 55.

    Philippe, M. et al. The palaeolatitudinal distribution of fossil wood genera as a proxy for European Jurassic terrestrial climate. Palaeogeogr. Palaeoclimatol. Palaeoecol. 466, 373–381 (2017).

    Google Scholar 

  • 56.

    Zhou, Z. A heterophyllous conifer from the Cretaceous of East China. Palaeontology 26, 789–811 (1983).

    Google Scholar 

  • 57.

    Farjon A. A. Natural History of Conifers (Timber Press, 2008).

  • 58.

    Diefendorf, A. F., Mueller, K. E., Wing, S. L., Koch, P. L. & Freeman, K. H. Global patterns in leaf 13C discrimination and implications for studies of past and future climate. Proc. Natl Acad. Sci. USA 107, 5738–5743 (2010).

    Google Scholar 

  • 59.

    Kohn, M. J. Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate. Proc. Natl Acad. Sci. USA 107, 19691–19695 (2010).

    Google Scholar 

  • 60.

    Schlesser, G. H., Helle, G., Lücke, A. & Vos, H. Isotope signals as climate proxies: the role of transfer functions in the study of terrestrial archives. Quat. Sci. Rev. 18, 927–943 (1999).

    Google Scholar 

  • 61.

    Silva, R. L., Duarte, L. V. & Filho, J. G. M. Optical and geochemical characterization of upper Sinemurian (Lower Jurassic) fossil wood from the Lusitanian Basin (Portugal). Geochem. J. 47, 489–498 (2013).

    Google Scholar 

  • 62.

    Lukens, W. E., Eze, P. & Schubert, B. A. The effect of diagenesis on carbon isotope values of fossil wood. Geology 47, 987–991 (2019).

    Google Scholar 

  • 63.

    Armendáriz, M. et al. An approach to estimate Lower Jurassic seawater oxygen isotope composition using δ18O and Mg/Ca ratios of belemnite calcites (early Pliensbachian, northern Spain). Terra Nova 25, 439–445 (2013).

    Google Scholar 

  • 64.

    Lear, C. H., Elderfield, H. & Wilson, P. A. Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite. Science 287, 269–272 (2000).

    Google Scholar 

  • 65.

    Hollis, C. J. et al. The DeepMIP contribution to PMIP4: methodologies for selection, compilation and analysis of latest Paleocene and early Eocene climate proxy data, incorporating version 0.1 of the DeepMIP database. Geosci. Model Dev. 12, 3149–3206 (2019).

    Google Scholar 

  • 66.

    Rosales, I. et al. Isotope records (C–O–Sr) of late Pliensbachian–early Toarcian environmental perturbations in the westernmost Tethys (Majorca Island, Spain). Palaeogeogr. Palaeoclimatol. Palaeoecol. 497, 168–185 (2018).

    Google Scholar 

  • 67.

    Val, J., Bádenas, B., Aurell, M. & Rosales, I. Cyclostratigraphy and chemostratigraphy of a bioclastic storm-dominated carbonate ramp (late Pliensbachian, Iberian Basin). Sediment. Geol. 355, 93–113 (2017).

    Google Scholar 

  • 68.

    Grossman, E. in The Geologic Time Scale 2012 (eds Gradstein, F. M. et al.) Ch. 10 (Elsevier, 2012).

  • 69.

    Ruebsam, W., Munzberger, P. & Schwark, L. Chronology of the early Toarcian environmental crisis in the Lorraine Sus-Basin (NE Paris Basin). Earth Planet. Sci. Lett. 404, 273–282 (2014).

    Google Scholar 

  • 70.

    Pittet, B., Suan, G., Fabien, L., Duarte, L. V. & Mattioli, E. Carbon isotope evidence for sedimentary discontinuities in the lower Toarcian of the Lusitanian Basin (Portugal): sea level change at the onset of the oceanic anoxic event. Sediment. Geol. 303, 1–14.

  • 71.

    Royer, D. L., Pagani, M. & Beerling, D. J. Geobiological constraints on Earth system sensitivity of CO2 during the Cretaceous and Cenozoic. Geobiology 10, 298–310 (2012).

    Google Scholar 

  • 72.

    Metodiev, L. & Koleva-Rekalova, E. Stable isotope records (δ18O and δ13C) of Lower–Middle Jurassic belemnites from the Western Balkan mountains (Bulgaria): palaeoenvironmental application. Appl. Geochem. 23, 2845–2856 (2008).

    Google Scholar 

  • 73.

    McArthur, J. M., Donovan, D. T., Thirlwall, M. F., Fouke, B. W. & Mattey, D. Strontium isotope profile of the early Toarcian (Jurassic) oceanic anoxic event, the duration of ammonite biozones, and belemnite palaeotemperatures. Earth Planet. Sci. Lett. 179, 269–285 (2000).

    Google Scholar 

  • 74.

    Jenkyns, H. G., Jones, C. E., Gröcke, D., Hesselbo, S. P. & Parkinson, D. N. Chemostratigraphy of the Jurassic System: applications, limitations and implications for palaeoceanography. J. Geol. Soc. Lond. 159, 351–378 (2002).

    Google Scholar 

  • 75.

    Ullmann, C. V., Thibault, N., Ruhl, M., Hesselbo, S. P. & Korte, C. Effect of a Jurassic oceanic anoxic event on belemnite ecology and evolution. Proc. Natl Acad. Sci. USA 111, 10073–10076 (2014).

    Google Scholar 

  • 76.

    Harazim, D. et al. Spatial variability of watermass conditions within the European Epicontinental Seaway during the Early Jurassic (Pliensbachian–Toarcian). Sedimentology 60, 359–390 (2010).

    Google Scholar 

  • 77.

    Dera, G. et al. Water mass exchange and variations in seawater temperature in the NW Tethys during the Early Jurassic: evidence from neodymium and oxygen isotopes of fish teeth and belemnites. Earth Planet. Sci. Lett. 286, 198–207 (2009).

    Google Scholar 

  • 78.

    Bailey, T. R., Rosenthal, Y., McArthur, J. M., van de Schootbrugge, B. & Thirlwall, M. F. Paleoceanographic changes of the late Pliensbachian–early Toarcian interval: a possible link to the genesis of an oceanic anoxic event. Earth Planet. Sci. Lett. 212, 307–320 (2003).

    Google Scholar 

  • 79.

    Montañez, I. P. & Poulsen, C. J. The late Paleozoic ice age: an evolving paradigm. Annu. Rev. Earth Planet. Sci. 41, 629–656 (2013).

    Google Scholar 

  • 80.

    Ahokas, J. M., Nystuen, J. P. & Martinius, A. W. Stratigraphic signatures of punctuated rise in relative sea-level in an estuary-dominated heterolithic succession: incised valley fills of the Toarcian Ostrealv Formation, Neill Klinter Group (Jameson Land, East Greenland). Mar. Pet. Geol. 50, 103–129 (2014).

    Google Scholar 

  • 81.

    Krencker, F.-C., Kindstrom, S. & Bodin, S. A major sea-level drop briefly precedes the Toarcian oceanic anoxic event: implication for Early Jurassic climate and carbon cycle. Sci. Rep. 9, 12518 (2014).

    Google Scholar 

  • 82.

    Marjanac, T. & Steel, R. J. Dunlin Group sequence stratigraphy in the northern North Sea: a model for Cook Sandstone deposition. Am. Assoc. Pet. Geol. Bull. 81, 276–292 (1997).

    Google Scholar 


  • Source: Ecology - nature.com

    Assessing the influence of the amount of reachable habitat on genetic structure using landscape and genetic graphs

    Biodiversity and ecosystem functions depend on environmental conditions and resources rather than the geodiversity of a tropical biodiversity hotspot