in

Manganese co-limitation of phytoplankton growth and major nutrient drawdown in the Southern Ocean

[adace-ad id="91168"]
  • 1.

    Da Silva, J. F. & Williams, R. J. P. The biological chemistry of the elements: the inorganic chemistry of life. Oxford University Press (2001).

  • 2.

    Moore, C. M. et al. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6, 701–710 (2013).

    ADS  CAS  Article  Google Scholar 

  • 3.

    Bruland, K. W., Orians, K. J. & Cowen, J. P. Reactive trace metals in the stratified central North Pacific. Geochim. Cosmochim. 58, 3171–3182 (1994).

    ADS  CAS  Article  Google Scholar 

  • 4.

    van Hulten, M. et al. Manganese in the west Atlantic Ocean in the context of the first global ocean circulation model of manganese. Biogeosciences 14, 1123–1152 (2017).

    ADS  Article  CAS  Google Scholar 

  • 5.

    Baker, A. R. et al. Trace element and isotope deposition across the air–sea inter- face: progress and research needs. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 374, 2081 (2016).

    Article  CAS  Google Scholar 

  • 6.

    Sunda, W. G., Huntsman, S. A. & Harvey, G. R. Photoreduction of manganese oxides in seawater and its geochemical and biological implications. Nature 301, 234–236 (1983).

    ADS  CAS  Article  Google Scholar 

  • 7.

    Sunda, W. G. & Huntsman, S. A. Photoreduction of manganese oxides in seawater. Mar. Chem. 46, 133–152 (1994).

    CAS  Article  Google Scholar 

  • 8.

    Sunda, W. G. & Huntsman, S. Effect of sunlight on redox cycles of manganese in the southwestern Sargasso Sea. Deep-Sea Res. Pt. A 35, 1297–1317 (1988).

    ADS  CAS  Article  Google Scholar 

  • 9.

    Wagener, T., Guieu, C., Losno, R., Bonnet, S. & Mahowald, N. Revisiting atmospheric dust export to the Southern Hemisphere ocean: Biogeochemical implications. Glob. Biogeochem. Cycles 22, GB2006 (2008).

    ADS  Article  CAS  Google Scholar 

  • 10.

    Tamsitt, V. et al. Spiraling pathways of global deep waters to the surface of the Southern Ocean. Nat. Commun. 8, 172 (2017).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 11.

    Boyd, P. W. Environmental factors controlling phytoplankton processes in the Southern Ocean. J. Phycol. 38, 844–861 (2002).

    Article  Google Scholar 

  • 12.

    Hansell, D. A., Carlson, C. A., Repeta, D. J. & Schlitzer, R. Dissolved organic matter in the ocean: a controversy stimulates new insights. Oceanography 22, 202–211 (2009).

    Article  Google Scholar 

  • 13.

    Martin, J. H., Gordon, R. M. & Fitzwater, S. E. Iron in Antarctic waters. Nature 345, 156–158 (1990).

    ADS  CAS  Article  Google Scholar 

  • 14.

    Sedwick, P. N., Edwards, P. R., Mackey, D. J., Griffiths, F. B. & Parslow, J. S. Iron and manganese in surface waters of the Australian subantarctic region. Deep Sea Res. Pt. I 44, 1239–1253 (1997).

    CAS  Article  Google Scholar 

  • 15.

    Hatta, M., Measures, C. I., Selph, K. E., Zhou, M. & Hiscock, W. T. Iron fluxes from the shelf regions near the South Shetland Islands in the Drake Passage during the austral-winter 2006. Deep Sea Res. Pt. II 90, 89–101 (2013).

    ADS  CAS  Article  Google Scholar 

  • 16.

    Middag, R., De Baar, H. J. W., Laan, P. & Huhn, O. The effects of continental margins and water mass circulation on the distribution of dissolved aluminum and manganese in Drake Passage. J. Geophys. Res. 117, C01019 (2012).

    ADS  Google Scholar 

  • 17.

    Middag, R., de Baar, H. J., Klunder, M. B. & Laan, P. Fluxes of dissolved aluminum and manganese to the Weddell Sea and indications for manganese co‐limitation. Limnol. Oceanogr. 58, 287–300 (2013).

    ADS  CAS  Article  Google Scholar 

  • 18.

    Browning, T. J. et al. Strong responses of Southern Ocean phytoplankton communities to volcanic ash. Geophys. Res. Lett. 41, 2851–2857 (2014).

    ADS  CAS  Article  Google Scholar 

  • 19.

    Ito, T. & Follows, M. J. Preformed phosphate, soft tissue pump and atmospheric CO2. J. Mar. Res. 63, 813–839 (2005).

    CAS  Article  Google Scholar 

  • 20.

    Kohfeld, K. E. and Ridgwell, A., 2009. Glacial-interglacial variability in atmospheric CO2. Surface Ocean-Lower Atmosphere Processes (Am. Geophys. Union, Washington DC), pp 251– 286 (2009).

  • 21.

    Petit, J. et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429–436 (1999).

    ADS  CAS  Article  Google Scholar 

  • 22.

    Lamy, F. et al. Increased dust deposition in the Pacific Southern Ocean during glacial periods. Science 343, 403–407 (2014).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 23.

    Martin, J. H. Glacial‐interglacial CO2 change: the iron hypothesis. Paleoceanography 5, 1–13 (1990).

    ADS  Article  Google Scholar 

  • 24.

    Watson, A. J., Bakker, D. C. E., Ridgwell, A. J., Boyd, P. W. & Law, C. S. Effect of iron supply on Southern Ocean CO2 uptake and implications for glacial atmospheric CO2. Nature 407, 730–CO733 (2000).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 25.

    Sigman, D. M., Hain, M. P. & Haug, G. H. The polar ocean and glacial cycles in atmospheric CO2 concentration. Nature 466, 47–55 (2010).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 26.

    Khatiwala, S., Schmittner, A. & Muglia, J. Air-sea disequilibrium enhances ocean carbon storage during glacial periods. Sci. Adv. 5, eaaw4981 (2019).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 27.

    Wedepohl, K. H. The composition of the continental crust. Geochim. Cosmochim. Acta 59, 1217–1232 (1995).

    ADS  CAS  Article  Google Scholar 

  • 28.

    Chance, R., Jickells, T. D. & Baker, A. R. Atmospheric trace metal concentrations, solubility and deposition fluxes in remote marine air over the south-east Atlantic. Mar. Chem. 177, 45–56 (2015).

    CAS  Article  Google Scholar 

  • 29.

    Gaiero, D. M., Probst, J. L., Depetris, P. J., Bidart, S. M. & Leleyter, L. Iron and other transition metals in Patagonian riverborne and windborne materials: geochemical control and transport to the southern South Atlantic Ocean. Geochim. Cosmochim. Acta 67, 3603–3623 (2003).

    ADS  CAS  Article  Google Scholar 

  • 30.

    Tagliabue, A. et al. The integral role of iron in ocean biogeochemistry. Nature 543, 51–59 (2017).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 31.

    Peers, G. & Price, N. M. A role for manganese in superoxide dismutases and growth of iron‐deficient diatoms. Limnol. Oceanogr. 49, 1774–1783 (2004).

    ADS  CAS  Article  Google Scholar 

  • 32.

    Wu, M. et al. Manganese and iron deficiency in Southern Ocean Phaeocystis antarctica populations revealed through taxon-specific protein indicators. Nat. Commun. 10, 1–10 (2019).

    ADS  Article  CAS  Google Scholar 

  • 33.

    Bindoff, N. L. et al. Changing ocean, marine ecosystems, and dependent communities. In IPCC special report on the ocean and cryosphere in a changing climate (2019).

  • 34.

    Buma, A. G., De Baar, H. J., Nolting, R. F. & Van Bennekom, A. J. Metal enrichment experiments in the Weddell‐Scotia Seas: effects of iron and manganese on various plankton communities. Limnol. Oceanogr. 36, 1865–1878 (1991).

    ADS  CAS  Article  Google Scholar 

  • 35.

    Scharek, R., Van Leeuwe, M. A. & De Baar, H. J. Responses of Southern Ocean phytoplankton to the addition of trace metals. Deep Sea Res. Pt. II 44, 209–227 (1997).

    ADS  CAS  Article  Google Scholar 

  • 36.

    Sedwick, P. N., DiTullio, G. R. & Mackey, D. J. Iron and manganese in the Ross Sea, Antarctica: seasonal iron limitation in Antarctic shelf waters. J. Geophys. Res. 105, 11321–11336 (2000).

    ADS  CAS  Article  Google Scholar 

  • 37.

    Saito, M. A., Goepfert, T. J. & Ritt, J. T. Some thoughts on the concept of colimitation: three definitions and the importance of bioavailability. Limnol. Oceanogr. 53, 276–290 (2008).

    ADS  CAS  Article  Google Scholar 

  • 38.

    Hutchins, D. A. & Bruland, K. W. Iron-limited diatom growth and Si: N uptake ratios in a coastal upwelling regime. Nature 393, 561–564 (1998).

    ADS  CAS  Article  Google Scholar 

  • 39.

    Takeda, S. Influence of iron availability on nutrient consumption ratio of diatoms in oceanic waters. Nature 393, 774–777 (1998).

    ADS  CAS  Article  Google Scholar 

  • 40.

    Klunder, M. B. et al. Dissolved Fe across the Weddell Sea and Drake passage: impact of DFe on nutrient uptake. Biogeosciences 11, 651–669 (2014).

    ADS  Article  Google Scholar 

  • 41.

    Thomalla, S. J., Fauchereau, N., Swart, S. & Monteiro, P. M. S. Regional scale characteristics of the seasonal cycle of chlorophyll in the Southern Ocean. Biogeosciences 8, 2849–2866 (2011).

    ADS  CAS  Article  Google Scholar 

  • 42.

    Moore, C. M. Diagnosing oceanic nutrient deficiency. Philos. Tran. R. Soc. A 374, 20150290 (2016).

    ADS  Article  CAS  Google Scholar 

  • 43.

    Middag, R. D., De Baar, H. J. W., Laan, P., Cai, P. V. & Van Ooijen, J. C. Dissolved manganese in the Atlantic sector of the Southern Ocean. Deep Sea Res. Pt. II 58, 2661–2677 (2011).

    ADS  CAS  Article  Google Scholar 

  • 44.

    Klunder, M. B., Laan, P., Middag, R., De Baar, H. J. W. & Van Ooijen, J. C. Dissolved iron in the Southern Ocean (Atlantic sector). Deep Sea Res. Pt. II 58, 2678–2694 (2011).

    ADS  CAS  Article  Google Scholar 

  • 45.

    Boyd, P. W. et al. Mesoscale iron enrichment experiments 1993-2005: synthesis and future directions. Science 315, 612–617 (2007).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 46.

    Parekh, P., Follows, M. J. & Boyle, E. A. Decoupling of iron and phosphate in the global ocean. Glob. Biogeochem. Cycles 19, GB2020 (2005).

    ADS  Article  CAS  Google Scholar 

  • 47.

    Measures, C. I. et al. The influence of shelf processes in delivering dissolved iron to the HNLC waters of the Drake Passage, Antarctica. Deep Sea Res. Pt. I 90, 77–88 (2013).

    ADS  CAS  Article  Google Scholar 

  • 48.

    Dulaiova, H., Ardelan, M. V., Henderson, P. B. & Charette, M. A. Shelf‐derived iron inputs drive biological productivity in the southern Drake Passage. Glob. Biogeochem. Cycles 23, GB4014 (2009).

    ADS  Article  CAS  Google Scholar 

  • 49.

    Jiang, M. et al. Fe sources and transport from the Antarctic Peninsula shelf to the southern Scotia Sea. Deep Sea Res. Pt. I 150, 103060 (2019).

    CAS  Article  Google Scholar 

  • 50.

    Anderson, T. R., Gentleman, W. C. & Yool, A. EMPOWER-1.0: an efficient model of planktonic ecosystems written in R. Geosci. Mod. Dev. 8, 2231–2262 (2015).

    Article  Google Scholar 

  • 51.

    Resing, J. A. et al. Basin-scale transport of hydrothermal dissolved metals across the South Pacific Ocean. Nature 523, 200–203 (2015).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 52.

    Bertrand, E. M. et al. Vitamin B12 and iron colimitation of phytoplankton growth in the Ross Sea. Limnol. Oceanogr. 52, 1079–1093 (2007).

    ADS  CAS  Article  Google Scholar 

  • 53.

    Le Quéré, C. et al. Role of zooplankton dynamics for Southern Ocean phytoplankton biomass and global biogeochemical cycles. Biogeosciences 13, 4111–4133 (2016).

    ADS  Article  CAS  Google Scholar 

  • 54.

    Calvo, E., Pelejero, C., Logan, G. A. & De Deckker, P. Dust‐induced changes in phytoplankton composition in the Tasman Sea during the last four glacial cycles. Paleoceanography 19, PA2020 (2004).

    ADS  Article  Google Scholar 

  • 55.

    Sigman, D. M., Altabet, M. A., Francois, R., McCorkle, D. C. & Gaillard, J. F. The isotopic composition of diatom‐bound nitrogen in Southern Ocean sediments. Paleoceanography 14, 118–134 (1999).

    ADS  Article  Google Scholar 

  • 56.

    De La Rocha, C. L., Brzezinski, M. A., DeNiro, M. J. & Shemesh, A. Silicon-isotope composition of diatoms as an indicator of past oceanic change. Nature 395, 680–683 (1998).

    ADS  Article  CAS  Google Scholar 

  • 57.

    Browning, T. J. et al. Nutrient co-limitation at the boundary of an oceanic gyre. Nature 551, 242–246 (2017).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 58.

    Venables, H. & Moore, C. M. Phytoplankton and light limitation in the Southern Ocean: learning from high‐nutrient, high‐chlorophyll areas. J. Geophys. Res. Oceans 115, C02015 (2010).

    ADS  Article  CAS  Google Scholar 

  • 59.

    Van Heukelem, L. & Thomas, C. S. Computer-assisted high-performance liquid chromatography method development with applications to the isolation and analysis of phytoplankton pigments. J. Chromatogr. A 910, 31–49 (2001).

    PubMed  Article  PubMed Central  Google Scholar 

  • 60.

    Mackey, M. D., Mackey, D. J., Higgins, H. W. & Wright, S. W. CHEMTAX-a program for estimating class abundances from chemical markers: application to HPLC measurements of phytoplankton. Mar. Ecol. Prog. Ser. 144, 265–283 (1996).

    ADS  CAS  Article  Google Scholar 

  • 61.

    Gibberd, M. J., Kean, E., Barlow, R., Thomalla, S. & Lucas, M. Phytoplankton chemotaxonomy in the Atlantic sector of the Southern Ocean during late summer 2009. Deep Sea Res. Pt. I 78, 70–78 (2013).

    CAS  Article  Google Scholar 

  • 62.

    Rapp, I., Schlosser, C., Rusiecka, D., Gledhill, M. & Achterberg, E. P. Automated preconcentration of Fe, Zn, Cu, Ni, Cd, Pb, Co, and Mn in seawater with analysis using high-resolution sector field inductively-coupled plasma mass spectrometry. Anal. Chim. Acta 976, 1–13 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 63.

    Wilson, S. T. et al. Kīlauea lava fuels phytoplankton bloom in the North Pacific Ocean. Science 365, 1040–1044 (2019).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 64.

    Wuttig, K. et al. Critical evaluation of a seaFAST system for the analysis of trace metals in marine samples. Talanta 197, 653–668 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 65.

    Martin, J. H., Knauer, G. A., Karl, D. M. & Broenkow, W. W. VERTEX: carbon cycling in the northeast Pacific. Deep Sea Res. Pt. A 34, 267–285 (1987).

    ADS  CAS  Article  Google Scholar 

  • 66.

    Buck, K. N., Sohst, B. & Sedwick, P. N. The organic complexation of dissolved iron along the US GEOTRACES (GA03) North Atlantic Section. Deep Sea Res. Pt. II 116, 152–165 (2015).

    CAS  Article  Google Scholar 

  • 67.

    Parekh, P., Follows, M. J. & Boyle, E. Modeling the global ocean iron cycle. Glob. Biogeochem. Cycles 18, GB1002 (2004).

    ADS  Article  CAS  Google Scholar 

  • 68.

    Dutkiewicz, S., Follows, M. J. & Parekh, P. Interactions of the iron and phosphorus cycles: a three‐dimensional model study. Glob. Biogeochem. Cycles 19, GB1012 (2005).

    ADS  Article  CAS  Google Scholar 

  • 69.

    Glockzin, M., Pollehne, F. & Dellwig, O. Stationary sinking velocity of authigenic manganese oxides at pelagic redoxclines. Mar. Chem. 160, 67–74 (2014).

    CAS  Article  Google Scholar 

  • 70.

    Buesseler, K. O., McDonnell, A. M., Schofield, O. M., Steinberg, D. K. & Ducklow, H. W. High particle export over the continental shelf of the west Antarctic Peninsula. Geophys. Res. Lett. 37, L22606 (2010).

    ADS  Article  CAS  Google Scholar 

  • 71.

    de Boyer Montégut, C., Madec, G., Fischer, A. S., Lazar, A. & Iudicone, D. Mixed layer depth over the global ocean: an examination of profile data and a profile‐based climatology. J. Geophys. Res. 109, C12003 (2004).

    ADS  Article  Google Scholar 

  • 72.

    Mahowald, N. et al. Dust sources and deposition during the last glacial maximum and current climate: a comparison of model results with paleodata from ice cores and marine sediments. J. Geophys. Res. Atmospheres 104, 15895–15916 (1999).

    ADS  Article  Google Scholar 


  • Source: Ecology - nature.com

    George Shultz PhD ’49, renowned statesman and former professor, dies at 100

    Descriptive multi-agent epidemiology via molecular screening on Atlantic salmon farms in the northeast Pacific Ocean