in

Principles, drivers and opportunities of a circular bioeconomy

[adace-ad id="91168"]
  • 1.

    Haberl, H., Erb, K.-H. & Krausmann, F. Human appropriation of net primary production: patterns, trends, and planetary boundaries. Annu. Rev. Environ. Resour. 39, 363–391 (2014).

    Article 

    Google Scholar 

  • 2.

    Krausmann, F. et al. Global human appropriation of net primary production doubled in the 20th century. Proc. Natl Acad. Sci. USA 110, 10324–10329 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 3.

    Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 4.

    Steffen, W. et al. Planetary boundaries: guiding changing planet. Science 347, 1259855 (2015).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 5.

    Muscat, A., de Olde, E. M., de Boer, I. J. M. & Ripoll-Bosch, R. The battle for biomass: a systematic review of food-feed-fuel competition. Glob. Food Sec. 25, 100330 (2020).

    Article 

    Google Scholar 

  • 6.

    Befort, N. Going beyond definitions to understand tensions within the bioeconomy: the contribution of sociotechnical regimes to contested fields. Technol. Forecast. Soc. Change 153, 119923 (2020).

    Article 

    Google Scholar 

  • 7.

    Jørgensen, S. E. & Nielsen, S. N. Application of ecological engineering principles in agriculture. Ecol. Eng. 7, 373–381 (1996).

    Article 

    Google Scholar 

  • 8.

    Potting, J., Hekkert, M., Worrell, E. & Hanemaaijer, A. Circular Economy: Measuring Innovation in the Product Chain (PBL Netherlands Environmental Assessment Agency, 2016).

  • 9.

    Van Kernebeek, H. R. J., Oosting, S. J., van Ittersum, M. K., Ripoll-Bosch, R. & de Boer, I. J. M. Closing the phosphorus cycle in a food system: insights from a modelling exercise. Animal 12, 1755–1765 (2018).

    Article 
    CAS 

    Google Scholar 

  • 10.

    Scherhaufer, S., Moates, G., Hartikainen, H., Waldron, K. & Obersteiner, G. Environmental impacts of food waste in Europe. Waste Manag. 77, 98–113 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 11.

    Global Food Losses and Food Waste: Extent, Causes and Prevention (FAO, 2011).

  • 12.

    van den Bos Verma, M., de Vreede, L., Achterbosch, T. & Rutten, M. M. Consumers discard a lot more food than widely believed: Estimates of global food waste using an energy gap approach and affluence elasticity of food waste. PLoS ONE 15, e0228369 (2020).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Obesity and Overweight. WHO https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed 10 April 2020).

  • 14.

    Rico-Campà, A. et al. Association between consumption of ultra-processed foods and all cause mortality: SUN prospective cohort study. Brit. Med. J. 365, l1949 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 15.

    Srour, B. et al. Ultra-processed food intake and risk of cardiovascular disease: prospective cohort study (NutriNet-Santé). Brit. Med. J. 365, l1451 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 16.

    Daystar, J., Chapman, L., Moore, M., Pires, S. & Golden, J. Quantifying apparel consumer use behavior in six countries: addressing a data need in life cycle assessment modeling. J. Text. Apparel Technol. Manag. 11, 1–25 (2019).

    Google Scholar 

  • 17.

    Mottet, A. et al. Livestock: on our plates or eating at our table? A new analysis of the feed/food debate. Glob. Food Sec. 14, 1–8 (2017).

    Article 

    Google Scholar 

  • 18.

    Cashion, T., Le Manach, F., Zeller, D. & Pauly, D. Most fish destined for fishmeal production are food-grade fish. Fish Fish. 18, 837–844 (2017).

    Article 

    Google Scholar 

  • 19.

    Garnett, T. Livestock-related greenhouse gas emissions: impacts and options for policy makers. Environ. Sci. Policy 12, 491–503 (2009).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Goodland, R. Environmental sustainability in agriculture: diet matters. Ecol. Econ. 23, 189–200 (1997).

    Article 

    Google Scholar 

  • 21.

    Van Hal, O. et al. Upcycling food leftovers and grass resources through livestock: impact of livestock system and productivity. J. Clean. Prod. 219, 485–496 (2019).

    Article 

    Google Scholar 

  • 22.

    Van Zanten, H. H. E. et al. Defining a land boundary for sustainable livestock consumption. Glob. Change Biol. 24, 4185–4194 (2018).

    ADS 
    Article 

    Google Scholar 

  • 23.

    Zhou, S. et al. Balanced harvest: concept, policies, evidence, and management implications. Rev. Fish Biol. Fish. 29, 711–733 (2019).

    Article 

    Google Scholar 

  • 24.

    Haberl, H. & Geissler, S. Cascade utilization of biomass: strategies for a more efficient use of a scarce resource. Ecol. Eng. 16, 111–121 (2000).

    Article 

    Google Scholar 

  • 25.

    Suominen, T., Kunttu, J., Jasinevičius, G., Tuomasjukka, D. & Lindner, M. Trade-offs in sustainability impacts of introducing cascade use of wood. Scand. J. For. Res. 32, 588–597 (2017).

    Article 

    Google Scholar 

  • 26.

    Churkina, G. et al. Buildings as a global carbon sink. Nat. Sustain. 3, 269–276 (2020).

    Article 

    Google Scholar 

  • 27.

    Max-Neef, M. in Real-Life Economics (eds Ekins, P. & Max-Neef, M.) Ch. 7 (Routledge, 1992).

  • 28.

    Doyal, L. & Gough, I. A Theory of Human Need (Macmillan, 1991).

  • 29.

    Bos-Brouwers, H., Langelaan, B. & Sanders, J. Chances for biomass. Wageningen University UR https://edepot.wur.nl/248866 (2012).

  • 30.

    Sandin, G. & Peters, G. M. Environmental impact of textile reuse and recycling – a review. J. Clean. Prod. 184, 353–365 (2018).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Korhonen, J., Honkasalo, A. & Seppälä, J. Circular economy: the concept and its limitations. Ecol. Econ. 143, 37–46 (2018).

    Article 

    Google Scholar 

  • 32.

    Castro, M. B. G., Remmerswaal, J. A. M., Brezet, J. C. & Reuter, M. A. Exergy losses during recycling and the resource efficiency of product systems. Resour. Conserv. Recycl. 52, 219–233 (2007).

    Article 

    Google Scholar 

  • 33.

    Bergen, S. D., Bolton, S. M. & Fridley, J. L. Design principles for ecological engineering. Ecol. Eng. 18, 201–210 (2001).

    Article 

    Google Scholar 

  • 34.

    Vidal, O., Goffé, B. & Arndt, N. Metals for a low-carbon society. Nat. Geosci. 6, 894–896 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 35.

    Grandell, L. & Höök, M. Assessing rare metal availability challenges for solar energy technologies. Sustainability 7, 11818–11837 (2015).

    CAS 
    Article 

    Google Scholar 

  • 36.

    Kovacic, Z., Strand, R. & Völker, T. The Circular Economy in Europe (Routledge, 2019).

  • 37.

    Dammer, L. & Essel, R. Quo Vadis, Cascading Use of Biomass? (nova Institute for Ecology and Innovation, 2015).

  • 38.

    Cascading Use of Biomass: Opportunities and Obstacles in EU Policies 2013–2016 (Birdlife Europe & European Environmental Bureau, 2014).

  • 39.

    Zabaniotou, A. Redesigning a bioenergy sector in EU in the transition to circular waste-based bioeconomy: a multidisciplinary review. J. Clean. Prod. 177, 197–206 (2018).

    Article 

    Google Scholar 

  • 40.

    Termeer, C. J. A. M. & Metze, T. A. P. More than peanuts: transformation towards a circular economy through a small-wins governance framework. J. Clean. Prod. 240, 118272 (2019).

    Article 

    Google Scholar 

  • 41.

    Velenturf, A. P. M. et al. Circular economy and the matter of integrated resources. Sci. Total Environ. 689, 963–969 (2019).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 42.

    de Boer, I. J. M. & Van Ittersum, M. K. Circularity in Agricultural Production (Wageningen University & Research, 2018); https://edepot.wur.nl/470625

  • 43.

    Van Eijk, F. Barriers & Drivers Towards a Circular Economy (Acceleratio, 2015); https://www.circulairondernemen.nl/uploads/e00e8643951aef8adde612123e824493.pdf

  • 44.

    Teigiserova, D. A., Hamelin, L. & Thomsen, M. Review of high-value food waste and food residues biorefineries with focus on unavoidable wastes from processing. Resour. Conserv. Recycl. 149, 413–426 (2019).

    Article 

    Google Scholar 

  • 45.

    Gifford, R. & Nilsson, A. Personal and social factors that influence pro-environmental concern and behaviour: a review. Int. J. Psychol. 49, 141–157 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 46.

    Steg, L. & Vlek, C. Encouraging pro-environmental behaviour: an integrative review and research agenda. J. Environ. Psychol. 29, 309–317 (2009).

    Article 

    Google Scholar 

  • 47.

    Nyborg, K. et al. Social norms as solutions. Science 354, 42–43 (2016).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 48.

    Kollmuss, A. & Agyeman, J. Mind the gap: why do people act environmentally and what are the barriers to pro-environmental behavior? Environ. Educ. Res. 8, 239–260 (2002).

    Article 

    Google Scholar 

  • 49.

    Rothgerber, H. Real men don’t eat (vegetable) quiche: masculinity and the justification of meat consumption. Psychol. Men Masculin. 14, 363–375 (2013).

    Article 

    Google Scholar 

  • 50.

    Shove, E., Watson, M. & Spurling, N. Conceptualizing connections: energy demand, infrastructures and social practices. Eur. J. Soc. Theory 18, 274–287 (2015).

    Article 

    Google Scholar 

  • 51.

    Barnes, S. J. Out of sight, out of mind: plastic waste exports, psychological distance and consumer plastic purchasing. Glob. Environ. Change 58, 101943 (2019).

    Article 

    Google Scholar 

  • 52.

    Richter, B. Knowledge and perception of food waste among German consumers. J. Clean. Prod. 166, 641–648 (2017).

    Article 

    Google Scholar 

  • 53.

    Schanes, K., Dobernig, K. & Gözet, B. Food waste matters: a systematic review of household food waste practices and their policy implications. J. Clean. Prod. 182, 978–991 (2018).

    Article 

    Google Scholar 

  • 54.

    Aschemann-Witzel, J., de Hooge, I., Amani, P., Bech-Larsen, T. & Oostindjer, M. Consumer-related food waste: causes and potential for action. Sustainability 7, 6457–6477 (2015).

    Article 

    Google Scholar 

  • 55.

    Priefer, C., Jörissen, J. & Bräutigam, K. R. Food waste prevention in Europe: a cause-driven approach to identify the most relevant leverage points for action. Resour. Conserv. Recycl. 109, 155–165 (2016).

    Article 

    Google Scholar 

  • 56.

    Ölander, F. & Thøgersen, J. Informing versus nudging in environmental policy. J. Consum. Policy 37, 341–356 (2014).

    Article 

    Google Scholar 

  • 57.

    Söderholm, P. Taxing virgin natural resources: lessons from aggregates taxation in Europe. Resour. Conserv. Recycl. 55, 911–922 (2011).

    Article 

    Google Scholar 

  • 58.

    Growth Within: A Circular Economy Vision for a Competitive Europe (Ellen Macarthur Foundation, 2015); https://www.ellenmacarthurfoundation.org/assets/downloads/publications/EllenMacArthurFoundation_Growth-Within_July15.pdf

  • 59.

    Spierling, S., Venkatachalam, V., Behnsen, H., Herrmann, C. & Endres, H. Bioplastics and Circular Economy—Performance Indicators to Identify Optimal Pathways (Springer, 2019).

  • 60.

    Van Zanten, H., Mollenhorst, H., Klootwijk, C. W., van Middelaar, C. E. & de Boer, I. J. M. Global food supply: land use efficiency of livestock systems. Int. J. Life Cycle Assess. 21, 747–758 (2016).

    Article 
    CAS 

    Google Scholar 

  • 61.

    Odegard, I., Croezen, H. & Bergsma, G. Cascading of Biomass: 13 Solutions for a Sustainable Bio-based Economy-Making Better Choices for Use of Biomass Residues, By-products and Wastes (CE Delft, 2012).

  • 62.

    Szarka, N., Wolfbauer, J. & Bezama, A. A systems dynamics approach for supporting regional decisions on the energetic use of regional biomass residues. Waste Manage. Res. 36, 332–341 (2018).

    Article 

    Google Scholar 

  • 63.

    Koppelmaki, K., Helenius, J. & Schulte, R. P. O. Nested circularity in food systems: a Nordic case study on connecting biomass, nutrient and energy flows from field scale to continent. Resour. Conserv. Recycl. 164, 105218 (2021).

    Article 

    Google Scholar 

  • 64.

    Mayer, A. L. Importing timber, exporting ecological impact. Science 308, 359–360 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 65.

    Mayer, A., Schaffartzik, A., Haas, W. & Rojas-Sepúlveda, A. Patterns of Global Biomass Trade: Implications for Food Sovereignty and Socio-Environmental Conflicts (EJOLT, 2015).

  • 66.

    Raworth, K. A doughnut for the Anthropocene: humanity’s compass in the 21st century. Lancet Planet. Health 1, e48–e49 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 67.

    O’Neill, D. W., Fanning, A. L., Lamb, W. F. & Steinberger, J. K. A good life for all within planetary boundaries. Nat. Sustain. 1, 88–95 (2018).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Gene drives gaining speed

    Principles of seed banks and the emergence of complexity from dormancy