in

Selection of mesophotic habitats by Oculina patagonica in the Eastern Mediterranean Sea following global warming

[adace-ad id="91168"]
  • 1.

    Cook, B. I., Wolkovich, E. M. & Parmesan, C. Divergent responses to spring and winter warming drive community level flowering trends. Proc. Natl. Acad. Sci. USA 109, 9000–9005 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 2.

    Chen, I. C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science (80-). 333, 1024–1026 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 3.

    Suggitt, A. J. et al. Habitat microclimates drive fine-scale variation in extreme temperatures. Oikos 120, 1–8 (2011).

    Article 

    Google Scholar 

  • 4.

    Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919–925 (2013).

    ADS 
    Article 

    Google Scholar 

  • 5.

    Suggitt, A. J., et al. Habitatmicroclimates drive fine-scale variation in extreme temperatures. Oikos 120, 1–8. https://doi.org/10.1111/j.1600-0706.2010.18270.x (2011).

    Article 

    Google Scholar 

  • 6.

    Kersting, D. K., Bensoussan, N. & Linares, C. Long-term responses of the endemic reef-builder cladocora caespitosa to mediterranean warming. PLoS ONE 8, e70820 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 7.

    Rodolfo-Metalpa, R. et al. Thermally tolerant corals have limited capacity to acclimatize to future warming. Glob. Change Biol. 20, 3036–3049 (2014).

    ADS 
    Article 

    Google Scholar 

  • 8.

    Fine M., & Loya Y. Coral bleaching in a temperate sea: From colony physiology to population ecology. In: Coral Health and Disease (eds. Rosenberg, E., & Loya, Y). https://doi.org/10.1007/978-3-662-06414-6_6 (Springer, Berlin, Heidelberg 2004).

  • 9.

    Liu, G., Strong, A. E., Skirving, W. J. & Arzayus, L. F. Overview of NOAA Coral Reef Watch Program’s near-real-time satellite global coral bleaching monitoring activities. Proc. 10th Int. Coral Reef Symp. 1793, 1783–1793 (2006).

    Google Scholar 

  • 10.

    Glynn, P. W. Coral reef bleaching: Facts, hypotheses and implications. Glob. Change Biol. 2, 495–509 (1996).

    ADS 
    Article 

    Google Scholar 

  • 11.

    Price, N. N. et al. Global biogeography of coral recruitment: Tropical decline and subtropical increase. Mar. Ecol. Prog. Ser. 621, 1–17 (2019).

    ADS 
    Article 

    Google Scholar 

  • 12.

    Serrano, E. et al. Rapid northward spread of a zooxanthellate coral enhanced by artificial structures and sea warming in the Western Mediterranean. PLoS One 8(1), e52739. https://doi.org/10.1371/journal.pone.0052739 (2013).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Grupstra, C. G. B. et al. Evidence for coral range expansion accompanied by reduced diversity of Symbiodinium genotypes. Coral Reefs 2017 363. 36, 981–985 (2017).

    Google Scholar 

  • 14.

    Serrano, E., Ribes, M. & Coma, R. Demographics of the zooxanthellate coral Oculina patagonica along the Mediterranean Iberian coast in relation to environmental parameters. Sci. Total Environ. 634, 1580–1592 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 15.

    Leichter, J. J., Helmuth, B. & Fischer, A. M. Variation beneath the surface: Quantifying complex thermal environments on coral reefs in the Caribbean, Bahamas and Florida. J. Mar. Res. 64, 563–588 (2006).

    Article 

    Google Scholar 

  • 16.

    Gould, K., Bruno, J. F., Ju, R. & Goodbody-Gringley, G. Upper-mesophotic and shallow reef corals exhibit similar thermal tolerance, sensitivity and optima. Coral Reefs https://doi.org/10.1007/s00338-021-02095-w (2021).

    Article 

    Google Scholar 

  • 17.

    Semmler, R. F., Hoot, W. C. & Reaka, M. L. Are mesophotic coral ecosystems distinct communities and can they serve as refugia for shallow reefs?. Coral Reefs 36, 433–444 (2017).

    ADS 
    Article 

    Google Scholar 

  • 18.

    Shlesinger, T. & Loya, Y. Depth-dependent parental effects create invisible barriers to coral dispersal. Commun. Biol. 4(202), https://doi.org/10.1038/s42003-021-01727-9 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Ledoux, J.-B. et al. Potential for adaptive evolution at species range margins: Contrasting interactions between red coral populations and their environment in a changing ocean. Ecol. Evol. 5, 1178–1192 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 20.

    Liberman, R., Shlesinger, T., Loya, Y. & Benayahu, Y. Octocoral sexual reproduction: Temporal disparity between mesophotic and shallow-reef populations. Front. Mar. Sci. 5, 1–14 (2018).

    Article 

    Google Scholar 

  • 21.

    Rapuano, H., Shlesinger, T., Loya, Y., Amit, T. & Grinblat, M. Can mesophotic reefs replenish shallow reefs? Reduced coral reproductive performance casts a doubt. Ecology 99, 421–437 (2017).

    Google Scholar 

  • 22.

    Bongaerts, P., Ridgway, T., Sampayo, E. M. & Hoegh-Guldberg, O. Assessing the ‘deep reef refugia’ hypothesis: Focus on Caribbean reefs. Coral Reefs 29, 1–19 (2010).

    Article 

    Google Scholar 

  • 23.

    Hoogenboom, M., Rodolfo-Metalpa, R. & Ferrier-Pagès, C. Co-variation between autotrophy and heterotrophy in the Mediterranean coral Cladocora caespitosa. J. Exp. Biol. 213, 2399–2409 (2010).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 24.

    Mass, T. et al. Photoacclimation of Stylophora pistillata to light extremes: Metabolism and calcification. Mar. Ecol. Prog. Ser. 334, 93–102 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 25.

    Bednarz, V. N., Grover, R., Maguer, J. F., Fine, M. & Ferrier-Pagès, C. The assimilation of diazotroph-derived nitrogen by scleractinian corals depends on their metabolic status. MBio 8, e02058-16 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 26.

    Grottoli, A. G., Rodrigues, L. J. & Palardy, J. E. Heterotrophic plasticity and resilience in bleached corals. Nature 440, 1186–1189 (2006).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 27.

    Tremblay, P. et al. Controlling effects of irradiance and heterotrophy on carbon translocation in the temperate coral Cladocora caespitosa. PLoS ONE 7, e44672 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 28.

    Aichelman, H. E., Zimmerman, R. C. & Barshis, D. J. Adaptive signatures in thermal performance of the temperate coral Astrangia poculata. J. Exp. Biol. 222, jeb189225 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 29.

    Shenkar, N., Fine, M. & Loya, Y. Size matters: Bleaching dynamics of the coral Oculina patagonica. Mar. Ecol. Prog. Ser. 294, 181–188 (2005).

    ADS 
    Article 

    Google Scholar 

  • 30.

    Zaquin, T., Zaslansky, P., Pinkas, I. & Mass, T. Simulating bleaching: Long-term adaptation to the dark reveals phenotypic plasticity of the Mediterranean Sea coral Oculina patagonica. Front. Mar. Sci. 6, 662 https://doi.org/10.3389/fmars.2019.00662 (2019).

    Article 

    Google Scholar 

  • 31.

    De Angelis d’Ossat, G. Altri Zoantari del Terziario della Patagonia. (1908).

  • 32.

    Fine, M. & Loya, Y. The coral Oculina patagonica a new immigrant to the Mediterranean coast of Israel. Isr. J. Zool. 41, 84 (1995).

    Google Scholar 

  • 33.

    Salomidi, M., Katsanevakis, S., Issaris, Y., Tsiamis, K. & Katsiaras, N. Anthropogenic disturbance of coastal habitats promotes the spread of the introduced scleractinian coral Oculina patagonica in the Mediterranean Sea. Biol. Invasions 15, 1961–1971 (2013).

    Article 

    Google Scholar 

  • 34.

    Fine, M., Zibrowius, H. & Loya, Y. Oculina patagonica: A non-lessepsian scleractinian coral invading the Mediterranean Sea. Mar. Biol. 138, 1195–1203 (2001).

    Article 

    Google Scholar 

  • 35.

    Sartoretto, S. et al. The alien coral Oculina patagonica De Angelis, 1908 (Cnidaria, Scleractinia) in Algeria and Tunisia. Aquat. Invasions 3, 173–180 (2008).

    Article 

    Google Scholar 

  • 36.

    Ozer, T., Gertman, I., Kress, N., Silverman, J. & Herut, B. Interannual thermohaline (1979–2014) and nutrient (2002–2014) dynamics in the Levantine surface and intermediate water masses, SE Mediterranean Sea. Glob. Planet. Change 151, 60–67 (2017).

    ADS 
    Article 

    Google Scholar 

  • 37.

    Leydet, K. P. & Hellberg, M. E. The invasive coral Oculina patagonica has not been recently introduced to the Mediterranean from the western Atlantic. BMC Evol. Biol. 15(79), https://doi.org/10.1186/s12862-015-0356-7 (2015).

  • 38.

    Veron, J. E. N. Título: Corals of the world. P.imprenta: Australia. Australian Institute of Marine Science. 463, 31 (2000).

  • 39.

    Einbinder, S. et al. Changes in morphology and diet of the coral Stylophora pistillata along a depth gradient. Mar. Ecol. Prog. Ser. 381, 167–174 (2009).

    ADS 
    Article 

    Google Scholar 

  • 40.

    Goodbody-Gringley, G. & Waletich, J. Morphological plasticity of the depth generalist coral, Montastraea cavernosa, on mesophotic reefs in Bermuda. Ecology 99, 1688–1690 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 41.

    Malik, A. et al. Molecular and skeletal fingerprints of scleractinian coral biomineralization: From the sea surface to mesophotic depths. Acta Biomater. https://doi.org/10.1016/j.actbio.2020.01.010 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    Frade, P. R., Englebert, N., Faria, J., Visser, P. M. & Bak, R. P. M. Distribution and photobiology of Symbiodinium types in different light environments for three colour morphs of the coral Madracis pharensis: Is there more to it than total irradiance?. Coral Reefs 27, 913–925 (2008).

    ADS 
    Article 

    Google Scholar 

  • 43.

    Lesser, M. P. et al. Photoacclimatization by the coral Montastraea cavernosa in the mesophotic zone: Light, food, and genetics. Ecology 91, 990–1003 (2010).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 44.

    Byler, K. A., Carmi-Veal, M., Fine, M. & Goulet, T. L. Multiple symbiont acquisition strategies as an adaptive mechanism in the coral Stylophora pistillata. PLoS ONE 8, 1–7 (2013).

    Article 
    CAS 

    Google Scholar 

  • 45.

    Scucchia, F., Nativ, H., Neder, M., Goodbody-Gringley, G. & Mass, T. Physiological characteristics of Stylophora pistillata larvae across a depth gradient. Front. Mar. Sci. https://doi.org/10.3389/fmars.2020.00013 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 46.

    Leydet, K. P. & Hellberg, M. E. Discordant coral–symbiont structuring: factors shaping geographical variation of Symbiodinium communities in a facultative zooxanthellate coral genus, Oculina. Coral Reefs 35, 583–595 (2016).

    ADS 
    Article 

    Google Scholar 

  • 47.

    Rubio-Portillo, E. et al. Eukarya associated with the stony coral Oculina patagonica from the Mediterranean Sea. Mar. Genom. 17, 17–23 (2014).

    Article 

    Google Scholar 

  • 48.

    Brakel, W. H. Small-scale spatial variation in light available to coral reef benthos: Quantum irradiance measurements from a Jamaican reef. Bull. Mar. Sci. 29, 406–413 (1979).

    ADS 

    Google Scholar 

  • 49.

    Ben-Zvi, O. et al. Photophysiology of a mesophotic coral 3 years after transplantation to a shallow environment. Coral Reefs 39, 903–913 (2020).

    Article 

    Google Scholar 

  • 50.

    Wang, C., Arneson, E. M., Gleason, D. F. & Hopkinson, B. M. Resilience of the temperate coral Oculina arbuscula to ocean acidification extends to the physiological level. Coral Reefs 40, 201–214 (2021).

    Article 

    Google Scholar 

  • 51.

    Hoogenboom, M., Béraud, E. & Ferrier-Pagès, C. Relationship between symbiont density and photosynthetic carbon acquisition in the temperate coral Cladocora caespitosa. Coral Reefs 29, 21–29. https://doi.org/10.1007/s00338-009-0558-9 (2010).

    ADS 
    Article 

    Google Scholar 

  • 52.

    Martinez, S. et al. Effect of different derivatization protocols on the calculation of trophic position using amino acids compound-specific stable isotopes. Front. Mar. Sci. 7, 1–7. https://doi.org/10.3389/fmars.2020.561568 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 53.

    Wall, C. B., Wallsgrove, N. J., Gates, R. D. & Popp, B. N. Amino acid δ 13C and δ 15N analyses reveal distinct species‐specific patterns of trophic plasticity in a marine symbiosis. Limnol. Oceanogr. 66, 2033–2050. https://doi.org/10.1002/lno.11742 (2021).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    Ferrier-Pagès, C. et al. Tracing the trophic plasticity of the coral-dinoflagellate symbiosis using amino acid compound-specific stable isotope analysis. Microorganisms 9, 1–16 (2021).

    Article 

    Google Scholar 

  • 55.

    Grossowicz, M., Shemesh, E., Martinez, S., Benayahu, Y. & Tchernov, D. New evidence of Melithaea erythraea colonization in the Mediterranean. Estuar. Coast. Shelf Sci. 236, 106652 (2020).

    Article 

    Google Scholar 

  • 56.

    Leal, M. C. et al. Trophic ecology of the facultative symbiotic coral Oculina arbuscula. Mar. Ecol. Prog. Ser. 504, 171–179 (2014).

    ADS 
    Article 

    Google Scholar 

  • 57.

    Ferrier-Pagès, C. et al. Summer autotrophy and winter heterotrophy in the temperate symbiotic coral Cladocora caespitosa. Limnol. Oceanogr. 56, 1429–1438 (2011).

    ADS 
    Article 

    Google Scholar 

  • 58.

    Ezzat, L., Fine, M., Maguer, J.-F., Grover, R. & Ferrier-Pagès, C. Carbon and nitrogen acquisition in shallow and deep holobionts of the Scleractinian coral S. pistillata. Front. Mar. Sci. 4, 1–12. https://doi.org/10.3389/fmars.2017.00102 (2017).

    Article 

    Google Scholar 

  • 59.

    Martinez, S. et al. Energy sources of the depth-generalist mixotrophic coral Stylophora pistillata. Front. Mar. Sci. 7, 1–16 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 60.

    Wall, C. B., Kaluhiokalani, M., Popp, B. N., Donahue, M. J. & Gates, R. D. Divergent symbiont communities determine the physiology and nutrition of a reef coral across a light-availability gradient. ISME J. 14, 945–958 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 61.

    Fox, M. D., Elliott Smith, E. A., Smith, J. E. & Newsome, S. D. Trophic plasticity in a common reef-building coral: Insights from δ13C analysis of essential amino acids. Funct. Ecol. 33, 2203–2214 (2019).

    Article 

    Google Scholar 

  • 62.

    Godinot, C., Grover, R., Allemand, D. & Ferrier-Pagès, C. High phosphate uptake requirements of the scleractinian coral Stylophora pistillata. J. Exp. Biol. 214, 2749–2754 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 63.

    Kersting, D. K. et al. Experimental evidence of the synergistic effects of warming and invasive algae on a temperate reef-builder coral. Sci. Rep. 2015 51 5, 1–8 (2015).

    Google Scholar 

  • 64.

    Suari, Y. et al. A long term physical and biogeochemical database of a hyper-eutrophicated Mediterranean micro-estuary. Data Br. 27, 104809 (2019).

    Article 

    Google Scholar 

  • 65.

    Liberman, R., Fine, M. & Benayahu, Y. Simulated climate change scenarios impact the reproduction and early life stages of a soft coral. Mar. Environ. Res. 163, 105215. https://doi.org/10.1016/j.marenvres.2020.105215 (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 66.

    Jeffrey, S. W. & Humphrey, G. F. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanz. 167, 191–194 (1975).

    CAS 
    Article 

    Google Scholar 

  • 67.

    Marsh, J. A. Primary productivity of reef-building calcareous red algae. Ecology 51, 255–263 (1970).

    Article 

    Google Scholar 

  • 68.

    Chisholm, J. R. M. & Gattuso, J.-P. Validation of the alkalinity anomaly technique for investigating calcification of photosynthesis in coral reef communities. Limnol. Oceanogr. 36, 1232–1239 (1991).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 69.

    Schneider, K. & Erez, J. The effect of carbonate chemistry on calcification and photosynthesis in the hermatypic coral Acropora eurystoma. Limnol. Oceanogr. 51, 1284–1293 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 70.

    Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial Cytochrome C oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 71.

    Arif, C. et al. Assessing Symbiodinium diversity in scleractinian corals via next-generation sequencing-based genotyping of the ITS2 rDNA region. Mol. Ecol. 23, 4418–4433 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 72.

    Larkin, M. A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 73.

    Hume, B. C. C. et al. SymPortal: A novel analytical framework and platform for coral algal symbiont next-generation sequencing ITS2 profiling. Mol. Ecol. Resour. 19, 1063–1080 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 74.

    Grover, R., Maguer, J.-F., Reynaud-Vaganay, S. & Ferrier-Pagès, C. Uptake of ammonium by the scleractinian coral Stylophora pistillata : Effect of feeding, light, and ammonium concentrations. Limnol. Oceanogr. 47, 782–790 (2002).

    ADS 
    Article 

    Google Scholar 

  • 75.

    Tremblay, P., Grover, R., Maguer, J. F., Legendre, L. & Ferrier-Pagès, C. Autotrophic carbon budget in coral tissue: A new 13C-based model of photosynthate translocation. J. Exp. Biol. 215, 1384–1393 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 76.

    Cowie, G. L. & Hedges, J. I. Improved amino acid quantification in environmental samples: Charge-matched recovery standards and reduced analysis time. Mar. Chem. 37, 223–238 (1992).

    CAS 
    Article 

    Google Scholar 

  • 77.

    Docherty, G., Jones, V. & Evershed, R. P. Practical and theoretical considerations in the gas chromatography/combustion/isotope ratio mass spectrometry δ 13C analysis of small polyfunctional compounds. Rapid Commun. Mass Spectrom. 15, 730–738 (2001).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 78.

    R Core Team. R: A Language and Environment for Statistical Computing. (2020).

  • 79.

    Fox, J. W., & Weisberg, S. An R companion to applied regression. 3rd ed. (Los Angeles: SAGE Publications, Inc, 2019)

    Google Scholar 

  • 80.

    Villanueva, R. A. M. & Chen, Z. J. ggplot2: Elegant graphics for data analysis (2nd ed.), Measurement: Interdisciplinary Research and Perspectives, 17(3), 160–167. https://doi.org/10.1080/15366367.2019.1565254 (2019).

  • 81.

    Wilke, C. O. cowplot: Streamlined Plot Theme and Plot Annotations for “ggplot2” (R 74 package version 1.1.0) [Computer software]. https://CRAN.Rproject.org/package=cowplot (2020).


  • Source: Ecology - nature.com

    Non-diphtheriae Corynebacterium species are associated with decreased risk of pneumococcal colonization during infancy

    Researchers design sensors to rapidly detect plant hormones