in

Trajectory of body mass index and height changes from childhood to adolescence: a nationwide birth cohort in Japan

[adace-ad id="91168"]

Participants

The Ministry of Health, Labour, and Welfare of Japan has been conducting The Longitudinal Survey of Newborns in the 21st Century since 2001 to establish strategies to counter the declining birthrate in Japan. The survey targeted all babies born in Japan between January 10 and 17 or between July 10 and 17 of 2001. Baseline questionnaires were sent to a total of 53,575 families when eligible babies reached the age of 6 months and 47,015 families initially completed the baseline questionnaire (88% response rate). These respondents were mailed follow-up questionnaires to investigate medical conditions and behaviors when children reached the ages of 1.5, 2.5, 3.5, 4.5, 5.5, 7, 8, 9, 10, 11, 12, 13, 14, and 15 years20,21,22,23. Birth record data from Vital Statistics of Japan are also linked for each child participating in the study. The current study included data for children/families who responded both to the baseline questionnaire and the fifteenth questionnaire at age 15 years.

The baseline survey at age 6 months included questions regarding children’s perinatal status as well as household and socioeconomic factors such as parental academic attainment, parental smoking status, and daycare attendance. The subsequent annual surveys starting at age 1.5 years included questions regarding each child’s height, weight and health status. We excluded 2382 children born before 37 weeks of pregnancy and one child with responses only for the baseline survey and the survey at age 15 years. A total of 26,778 children (315,581 data points) were included in the final analysis. A total of 11,141 children (41.61%) had responses to all 15 questionnaires between the ages of 6 months and 15 years, and responses to more than 12 questionnaires were available for the majority (91.94%) of children (Fig. 1, Table S1).

Figure 1

Flowchart of study participants.

Full size image

Measures

We calculated BMI based on each participant’s reported annual height and weight. Each participant’s annual BMI was converted to a BMI Z-score using smoothed L, M, and S values for BMI standards from a representative population of Japanese children24. Briefly, the LMS (lambda–mu–sigma) method is a method proposed by Cole et al. to monitor changes in the skewness of the distribution during childhood as a way of constructing normalized growth standards25. Participants were then classified into four BMI categories based on the World Health Organization (WHO) criteria26: underweight (BMI standard deviation [SD] score of − 5 or more but less than − 2), normal weight (BMI SD score of − 2 or more but less than 1), overweight (BMI SD score of 1 or more but less than 2), and obese (BMI SD score of 2 or more but less than 5). The definitions of overweight and obesity were different for children under 5 years of age: a BMI Z-score of 2 SD or more was categorized as overweight and a BMI Z-score of 3 SD or more was categorized as obese. BMI category at age 15 years was the main outcome of interest in the current study.

We also calculated annual height growth for each participant by subtracting the height reported at the previous survey from that reported in the current survey. For annual height growth between 5.5 and 7 years of age, this value was multiplied by 2/3 because of the 1.5-year interval between surveys.

Statistical analyses

We first compared baseline characteristics among the four BMI categories (underweight, normal weight, overweight and obese) at age 15 years. To evaluate potential selection bias resulting from losses to follow-up, we also compared the baseline characteristics of children included in the analysis and those of children lost to follow-up through to the fifteenth survey (at age 15 years).

We retrospectively examined annual aggregate categorical changes in individuals of the four BMI categories (groups) at age 15 years. For each group, the proportion of each BMI category at each survey between the ages of 1.5 and 14 years was calculated. In addition, we prospectively calculated the proportion of children in each BMI category at each survey between the ages of 1.5 and 14 years who eventually became underweight, normal weight, overweight, or obese at age 15 years. Note that these analyses were based on aggregate data and do not describe individual BMI changes and were performed using only the data obtained without imputation of missing values.

Under the assumption that missing data were missing at random, mixed effect models with natural cubic regression splines were applied to calculate the trajectories of BMI Z-scores and annual BMI Z-score changes through age 15 years for participants of each BMI category at age 15 years. Knots at seven locations were placed in percentiles of age to yield a sufficient number of measurements between each consecutive knot (age 1.5, 3.5, 5.5, 8.5, 11, 13 and 15 years), as recommended by Harrell27. The mixed effect model is useful for describing population average growth trajectories and individual growth trajectories even when data are not available for all children at all ages28,29,30,31. Briefly, the population average growth trajectory was modeled with fixed effects, while the individual variability is represented as random effects.

After fitting individual BMI trajectories using a mixed-effects model with natural cubic spline function, we estimated individual adiposity rebound timing as the age where the first derivative of the trajectory reached its minimum and the second derivative was positive32. Children were then classified into five categories (1.5–2.5 years, 3.5–4.5 years, 5.5–7 years, 8–10 years, and 11 years or older) for analysis of adiposity rebound timing33,34. The distribution of adiposity rebound timing was calculated for individuals of each BMI status at age 15 years overall and by gender.

Finally, we modelled annual height change and its associations with BMI status at age 15 years separately for each gender using mixed-effects models with natural cubic regression splines.

All statistical analyses were performed using Stata version 16 (StataCorp LLC, College Station, TX, USA). This study was approved by the Institutional Review Board at Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences (No.1506-073) and was conducted in accordance with the 1964 Helsinki Declaration and Ethical Guidelines for Medical and Health Research Involving Human Subjects. Informed consent was obtained by the opt-out method on the university’s website.


Source: Ecology - nature.com

Observed increases in extreme fire weather driven by atmospheric humidity and temperature

Evolution of cooperation in costly institutions exhibits Red Queen and Black Queen dynamics in heterogeneous public goods