in

Global prevalence of non-perennial rivers and streams

  • 1.

    Larned, S. T., Datry, T., Arscott, D. B. & Tockner, K. Emerging concepts in temporary-river ecology. Freshw. Biol. 55, 717–738 (2010).

    Google Scholar 

  • 2.

    Leigh, C. & Datry, T. Drying as a primary hydrological determinant of biodiversity in river systems: a broad-scale analysis. Ecography 40, 487–499 (2017).

    Google Scholar 

  • 3.

    Datry, T. et al. A global analysis of terrestrial plant litter dynamics in non-perennial waterways. Nat. Geosci. 11, 497–503 (2018).

    ADS 
    CAS 

    Google Scholar 

  • 4.

    Marcé, R. et al. Emissions from dry inland waters are a blind spot in the global carbon cycle. Earth Sci. Rev. 188, 240–248 (2019).

    ADS 

    Google Scholar 

  • 5.

    Steward, A. L., von Schiller, D., Tockner, K., Marshall, J. C. & Bunn, S. E. When the river runs dry: human and ecological values of dry riverbeds. Front. Ecol. Environ. 10, 202–209 (2012).

    Google Scholar 

  • 6.

    Acuña, V. et al. Why should we care about temporary waterways? Science 343, 1080–1081 (2014).

    ADS 
    PubMed 

    Google Scholar 

  • 7.

    Fritz, K., Cid, N. & Autrey, B. Governance, legislation, and protection of intermittent rivers and ephemeral streams. In Intermittent Rivers and Ephemeral Streams: Ecology and Management 477–507 (Academic Press, 2017); https://doi.org/10.1016/B978-0-12-803835-2.00019-X.

  • 8.

    Sullivan, S. M. P., Rains, M. C., Rodewald, A. D., Buzbee, W. W. & Rosemond, A. D. Distorting science, putting water at risk. Science 369, 766–768 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 9.

    Allen, D. C. et al. River ecosystem conceptual models and non‐perennial rivers: a critical review. Wiley Interdiscip. Rev. Water 7, e1473 (2020).

    Google Scholar 

  • 10.

    Datry, T., Larned, S. T. & Tockner, K. Intermittent rivers: a challenge for freshwater ecology. Bioscience 64, 229–235 (2014).

    Google Scholar 

  • 11.

    Ficklin, D. L., Abatzoglou, J. T., Robeson, S. M., Null, S. E. & Knouft, J. H. Natural and managed watersheds show similar responses to recent climate change. Proc. Natl Acad. Sci. USA 115, 8553–8557 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 12.

    Jaeger, K. L., Olden, J. D. & Pelland, N. A. Climate change poised to threaten hydrologic connectivity and endemic fishes in dryland streams. Proc. Natl Acad. Sci. USA 111, 13894–13899 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 13.

    Pumo, D., Caracciolo, D., Viola, F. & Noto, L. V. Climate change effects on the hydrological regime of small non-perennial river basins. Sci. Total Environ. 542, 76–92 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 14.

    Stubbington, R. et al. Biomonitoring of intermittent rivers and ephemeral streams in Europe: current practice and priorities to enhance ecological status assessments. Sci. Total Environ. 618, 1096–1113 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 15.

    Acuña, V. et al. Accounting for flow intermittency in environmental flows design. J. Appl. Ecol. 57, 742–753 (2020).

    Google Scholar 

  • 16.

    Arthington, A. H. et al. The Brisbane Declaration and Global Action Agenda on Environmental Flows (2018). Front. Environ. Sci. 6, 45 (2018).

    Google Scholar 

  • 17.

    Zimmer, M. A. et al. Zero or not? Causes and consequences of zero-flow stream gage readings. Wiley Interdiscip. Rev. Water 7, e1436 (2020).

    Google Scholar 

  • 18.

    Beaufort, A., Lamouroux, N., Pella, H., Datry, T. & Sauquet, E. Extrapolating regional probability of drying of headwater streams using discrete observations and gauging networks. Hydrol. Earth Syst. Sci. 22, 3033–3051 (2018).

    ADS 

    Google Scholar 

  • 19.

    Jaeger, K. L. & Olden, J. D. Electrical resistance sensor arrays as a means to quantify longitudinal connectivity of rivers. River Res. Appl. 28, 1843–1852 (2012).

    Google Scholar 

  • 20.

    Yu, S. et al. Evaluating a landscape-scale daily water balance model to support spatially continuous representation of flow intermittency throughout stream networks. Hydrol. Earth Syst. Sci. 24, 5279–5295 (2020).

    ADS 
    CAS 

    Google Scholar 

  • 21.

    Snelder, T. H. et al. Regionalization of patterns of flow intermittence from gauging station records. Hydrol. Earth Syst. Sci. 17, 2685–2699 (2013).

    ADS 

    Google Scholar 

  • 22.

    Jaeger, K. L. et al. Probability of Streamflow Permanence Model (PROSPER): a spatially continuous model of annual streamflow permanence throughout the Pacific Northwest. J. Hydrol. X 2, 100005 (2019).

    Google Scholar 

  • 23.

    Yu, S., Bond, N. R., Bunn, S. E. & Kennard, M. J. Development and application of predictive models of surface water extent to identify aquatic refuges in eastern Australian temporary stream networks. Water Resour. Res. 55, 9639–9655 (2019).

    ADS 

    Google Scholar 

  • 24.

    Kennard, M. J. et al. Classification of natural flow regimes in Australia to support environmental flow management. Freshw. Biol. 55, 171–193 (2010).

    Google Scholar 

  • 25.

    Lane, B. A., Dahlke, H. E., Pasternack, G. B. & Sandoval‐Solis, S. Revealing the diversity of natural hydrologic regimes in California with relevance for environmental flows applications. J. Am. Water Resour. Assoc. 53, 411–430 (2017).

    ADS 

    Google Scholar 

  • 26.

    Müller Schmied, H. et al. Sensitivity of simulated global-scale freshwater fluxes and storages to input data, hydrological model structure, human water use and calibration. Hydrol. Earth Syst. Sci. 18, 3511–3538 (2014).

    ADS 

    Google Scholar 

  • 27.

    Linke, S. et al. Global hydro-environmental sub-basin and river reach characteristics at high spatial resolution. Sci. Data 6, 283 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Tooth, S. Process, form and change in dryland rivers: a review of recent research. Earth Sci. Rev. 51, 67–107 (2000).

    ADS 

    Google Scholar 

  • 29.

    Costigan, K. H., Jaeger, K. L., Goss, C. W., Fritz, K. M. & Goebel, P. C. Understanding controls on flow permanence in intermittent rivers to aid ecological research: integrating meteorology, geology and land cover. Ecohydrology 9, 1141–1153 (2016).

    Google Scholar 

  • 30.

    Benstead, J. P. & Leigh, D. S. An expanded role for river networks. Nat. Geosci. 5, 678–679 (2012).

    ADS 
    CAS 

    Google Scholar 

  • 31.

    Godsey, S. E. & Kirchner, J. W. Dynamic, discontinuous stream networks: hydrologically driven variations in active drainage density, flowing channels and stream order. Hydrol. Processes 28, 5791–5803 (2014).

    ADS 

    Google Scholar 

  • 32.

    Metzger, M. J. et al. A high-resolution bioclimate map of the world: a unifying framework for global biodiversity research and monitoring. Glob. Ecol. Biogeogr. 22, 630–638 (2013).

    Google Scholar 

  • 33.

    Tolonen, K. E. et al. Parallels and contrasts between intermittently freezing and drying streams: From individual adaptations to biodiversity variation. Freshw. Biol. 64, 1679–1691 (2019).

    Google Scholar 

  • 34.

    Prancevic, J. P. & Kirchner, J. W. Topographic controls on the extension and retraction of flowing streams. Geophys. Res. Lett. 46, 2084–2092 (2019).

    ADS 

    Google Scholar 

  • 35.

    FAO. AQUAMAPS: Global Spatial Database on Water and Agriculture (Food and Agriculture Organization of the United Nations, accessed 15 October 2020); https://data.apps.fao.org/aquamaps/

  • 36.

    Schneider, A. et al. Global-scale river network extraction based on high-resolution topography and constrained by lithology, climate, slope, and observed drainage density. Geophys. Res. Lett. 44, 2773–2781 (2017).

    ADS 

    Google Scholar 

  • 37.

    Raymond, P. A. et al. Global carbon dioxide emissions from inland waters. Nature 503, 355–359 (2013); erratum 507, 387 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 38.

    Tramblay, Y. et al. Trends in flow intermittence for European rivers. Hydrol. Sci. J. 66, 37–49 (2021).

    Google Scholar 

  • 39.

    Döll, P., Douville, H., Güntner, A., Müller Schmied, H. & Wada, Y. Modelling freshwater resources at the global scale: challenges and prospects. Surv. Geophys. 37, 195–221 (2016).

    ADS 

    Google Scholar 

  • 40.

    Hammond, J. C. et al. Spatial patterns and drivers of nonperennial flow regimes in the contiguous United States. Geophys. Res. Lett. 48, e2020GL090794 (2021).

    ADS 

    Google Scholar 

  • 41.

    Döll, P. & Schmied, H. M. How is the impact of climate change on river flow regimes related to the impact on mean annual runoff? A global-scale analysis. Environ. Res. Lett. 7, 014037 (2012).

    ADS 

    Google Scholar 

  • 42.

    Gleeson, T. et al. The water planetary boundary: interrogation and revision. One Earth 2, 223–234 (2020).

    Google Scholar 

  • 43.

    Dickens, C. et al. Incorporating Environmental Flows into “Water Stress” Indicator 6.4.2: Guidelines for a Minimum Standard Method for Global Reporting (FAO, 2019); http://www.fao.org/documents/card/en/c/ca3097en/

  • 44.

    Sood, A. et al. Global Environmental Flow Information for the Sustainable Development Goals. IWMI Research Report 168 (International Water Management Institute, 2017); https://doi.org/10.5337/2017.201

  • 45.

    Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R. & Cushing, C. E. The River Continuum Concept. Can. J. Fish. Aquat. Sci. 37, 130–137 (1980).

    Google Scholar 

  • 46.

    Grill, G. et al. Mapping the world’s free-flowing rivers. Nature 569, 215–221 (2019); correction 572, E9 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 47.

    Stanley, E. H., Fisher, S. G. & Grimm, N. B. Ecosystem expansion and contraction in streams: desert streams vary in both space and time and fluctuate dramatically in size. Bioscience 47, 427–435 (1997).

    Google Scholar 

  • 48.

    Datry, T. et al. Flow intermittence and ecosystem services in rivers of the Anthropocene. J. Appl. Ecol. 55, 353–364 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 49.

    Nembrini, S., König, I. R. & Wright, M. N. The revival of the Gini importance? Bioinformatics 34, 3711–3718 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 50.

    Lehner, B. & Grill, G. Global river hydrography and network routing: baseline data and new approaches to study the world’s large river systems. Hydrol. Processes 27, 2171–2186 (2013).

    ADS 

    Google Scholar 

  • 51.

    Lehner, B., Verdin, K. & Jarvis, A. New global hydrography derived from spaceborne elevation data. Eos 89, 93–94 (2008).

    ADS 

    Google Scholar 

  • 52.

    Messager, M. L., Lehner, B., Grill, G., Nedeva, I. & Schmitt, O. Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nat. Commun. 7, 13603 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 53.

    Global Runoff Data Centre. In-situ river discharge data (World Meteorological Organization, accessed 15 May 2015); https://portal.grdc.bafg.de/applications/public.html?publicuser=PublicUser#dataDownload/Home

  • 54.

    Do, H. X., Gudmundsson, L., Leonard, M. & Westra, S. The Global Streamflow Indices and Metadata Archive (GSIM) – Part 1: The production of a daily streamflow archive and metadata. Earth Syst. Sci. Data 10, 765–785 (2018).

    ADS 

    Google Scholar 

  • 55.

    Gudmundsson, L., Do, H. X., Leonard, M. & Westra, S. The Global Streamflow Indices and Metadata Archive (GSIM) – Part 2: Quality control, time-series indices and homogeneity assessment. Earth Syst. Sci. Data 10, 787–804 (2018).

    ADS 

    Google Scholar 

  • 56.

    Lehner, B. et al. High‐resolution mapping of the world’s reservoirs and dams for sustainable river‐flow management. Front. Ecol. Environ. 9, 494–502 (2011).

    Google Scholar 

  • 57.

    Mackay, S. J., Arthington, A. H. & James, C. S. Classification and comparison of natural and altered flow regimes to support an Australian trial of the Ecological Limits of Hydrologic Alteration framework. Ecohydrology 7, 1485–1507 (2014).

    Google Scholar 

  • 58.

    Zhang, Y., Zhai, X., Shao, Q. & Yan, Z. Assessing temporal and spatial alterations of flow regimes in the regulated Huai River Basin, China. J. Hydrol. 529, 384–397 (2015).

    ADS 

    Google Scholar 

  • 59.

    Reynolds, L. V., Shafroth, P. B. & LeRoy Poff, N. Modeled intermittency risk for small streams in the Upper Colorado River Basin under climate change. J. Hydrol. 523, 768–780 (2015).

    ADS 

    Google Scholar 

  • 60.

    Costigan, K. H. et al. Flow regimes in intermittent rivers and ephemeral streams. In Intermittent Rivers and Ephemeral Streams: Ecology and Management 51–78 (Academic Press, 2017); https://doi.org/10.1016/B978-0-12-803835-2.00003-6

  • 61.

    Pickens, A. H. et al. Mapping and sampling to characterize global inland water dynamics from 1999 to 2018 with full Landsat time-series. Remote Sens. Environ. 243, 111792 (2020).

    ADS 

    Google Scholar 

  • 62.

    Hengl, T. et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 63.

    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Google Scholar 

  • 64.

    Trabucco, A. & Zomer, R. Global Aridity Index and Potential Evapotranspiration (ET0) Climate Database v2. figshare https://doi.org/10.6084/m9.figshare.7504448.v3 (2018).

  • 65.

    Bond, N. R. & Kennard, M. J. Prediction of hydrologic characteristics for ungauged catchments to support hydroecological modeling. Water Resour. Res. 53, 8781–8794 (2017).

    ADS 

    Google Scholar 

  • 66.

    Kotsiantis, S. B., Zaharakis, I. D. & Pintelas, P. E. Machine learning: a review of classification and combining techniques. Artif. Intell. Rev. 26, 159–190 (2006).

    Google Scholar 

  • 67.

    Wainer, J. Comparison of 14 different families of classification algorithms on 115 binary datasets. Preprint at https://arxiv.org/abs/1606.00930 (2016).

  • 68.

    Malley, J. D., Kruppa, J., Dasgupta, A., Malley, K. G. & Ziegler, A. Probability machines. Methods Inf. Med. 51, 74–81 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 69.

    Wright, M. N. & Ziegler, A. ranger: a fast implementation of random forests for high dimensional data in C++ and R. J. Stat. Softw. 77, https://doi.org/10.18637/jss.v077.i01 (2017).

  • 70.

    Lang, M. et al. mlr3: a modern object-oriented machine learning framework in R. J. Open Source Softw. 4, 1903 (2019).

    ADS 

    Google Scholar 

  • 71.

    Landau, W. M. The drake R package: a pipeline toolkit for reproducibility and high-performance computing. J. Open Source Softw. 3, 550 (2018).

    ADS 

    Google Scholar 

  • 72.

    Hothorn, T., Hornik, K. & Zeileis, A. Unbiased recursive partitioning: a conditional inference framework. J. Comput. Graph. Stat. 15, 651–674 (2006).

    MathSciNet 

    Google Scholar 

  • 73.

    Hothorn, T. & Zeileis, A. Partykit: a modular toolkit for recursive partytioning in R. J. Mach. Learn. Res. 16, 3905–3909 (2015).

    MathSciNet 
    MATH 

    Google Scholar 

  • 74.

    Wright, M. N., Dankowski, T. & Ziegler, A. Unbiased split variable selection for random survival forests using maximally selected rank statistics. Stat. Med. 36, 1272–1284 (2017).

    MathSciNet 
    PubMed 

    Google Scholar 

  • 75.

    Zhang, G. & Lu, Y. Bias-corrected random forests in regression. J. Appl. Stat. 39, 151–160 (2012).

    MathSciNet 
    MATH 

    Google Scholar 

  • 76.

    Japkowicz, N. & Stephen, S. The class imbalance problem: a systematic study. Intell. Data Anal. 6, 429–449 (2002).

    MATH 

    Google Scholar 

  • 77.

    Bischl, B., Mersmann, O., Trautmann, H. & Weihs, C. Resampling methods for meta-model validation with recommendations for evolutionary computation. Evol. Comput. 20, 249–275 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 78.

    Probst, P., Wright, M. N. & Boulesteix, A. L. Hyperparameters and tuning strategies for random forest. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 9, e1301 (2019).

    Google Scholar 

  • 79.

    Probst, P. & Boulesteix, A. L. To tune or not to tune the number of trees in random forest. J. Mach. Learn. Res. 18, 1–8 (2018).

    MathSciNet 
    MATH 

    Google Scholar 

  • 80.

    Schratz, P., Muenchow, J., Iturritxa, E., Richter, J. & Brenning, A. Hyperparameter tuning and performance assessment of statistical and machine-learning algorithms using spatial data. Ecol. Modell. 406, 109–120 (2019).

    Google Scholar 

  • 81.

    Brenning, A. Spatial cross-validation and bootstrap for the assessment of prediction rules in remote sensing: the R package sperrorest. In 2012 IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS) 5372–5375 (2012); https://doi.org/10.1109/IGARSS.2012.6352393

  • 82.

    Meyer, H., Reudenbach, C., Hengl, T., Katurji, M. & Nauss, T. Improving performance of spatio-temporal machine learning models using forward feature selection and target-oriented validation. Environ. Model. Softw. 101, 1–9 (2018).

    Google Scholar 

  • 83.

    Meyer, H., Reudenbach, C., Wöllauer, S. & Nauss, T. Importance of spatial predictor variable selection in machine learning applications – moving from data reproduction to spatial prediction. Ecol. Modell. 411, 108815 (2019).

    Google Scholar 

  • 84.

    Brodersen, K. H., Ong, C. S., Stephan, K. E. & Buhmann, J. M. The balanced accuracy and its posterior distribution. In Proc. Int. Conf. Pattern Recognition 3121–3124 (2010); https://doi.org/10.1109/ICPR.2010.764

  • 85.

    Altmann, A., Toloşi, L., Sander, O. & Lengauer, T. Permutation importance: a corrected feature importance measure. Bioinformatics 26, 1340–1347 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 86.

    Amaratunga, D., Cabrera, J. & Lee, Y.-S. Enriched random forests. Bioinformatics 24, 2010–2014 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 87.

    Evans, J. S., Murphy, M. A., Holden, Z. A. & Cushman, S. A. Modeling species distribution and change using random forest. In Predictive Species and Habitat Modeling in Landscape Ecology: Concepts and Applications 139–159 (Springer, 2011); https://doi.org/10.1007/978-1-4419-7390-0_8

  • 88.

    Jones, Z. M. & Linder, F. J. edarf: Exploratory Data Analysis using Random Forests. J. Open Source Softw. 1, 92 (2016).

    ADS 

    Google Scholar 

  • 89.

    Friedman, J. H. Greedy function approximation: a gradient boosting machine. Ann. Stat. 29, 1189–1232 (2001).

    MathSciNet 
    MATH 

    Google Scholar 

  • 90.

    Bondarenko, M., Kerr, D., Sorichetta, A. & Tatem, A. J. Census/projection-disaggregated gridded population datasets for 189 countries in 2020 using Built-Settlement Growth Model (BSGM) outputs (WorldPop, University of Southampton, accessed 26 November 2020); https://doi.org/10.5258/SOTON/WP00684

  • 91.

    Colvin, S. A. R. et al. Headwater streams and wetlands are critical for sustaining fish, fisheries, and ecosystem services. Fisheries 44, 73–91 (2019).

    Google Scholar 

  • 92.

    Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Springer Science & Business Media, 2009).

  • 93.

    Clauset, A., Shalizi, C. R. & Newman, M. E. J. Power-law distributions in empirical data. SIAM Rev. 51, 661–703 (2009).

    ADS 
    MathSciNet 
    MATH 

    Google Scholar 

  • 94.

    Fritz, K. M. et al. Comparing the extent and permanence of headwater streams from two field surveys to values from hydrographic databases and maps. J. Am. Water Resour. Assoc. 49, 867–882 (2013).

    ADS 

    Google Scholar 

  • 95.

    Stoddard, J. L. et al. Environmental Monitoring and Assessment Program (EMAP): Western Streams and Rivers Statistical Summary. Report no. EPA/620/R-05/006 (NTIS PB2007-102088) (US Environmental Protection Agency, 2005).

  • 96.

    Hafen, K. C., Blasch, K. W., Rea, A., Sando, R. & Gessler, P. E. The influence of climate variability on the accuracy of NHD perennial and nonperennial stream classifications. J. Am. Water Resour. Assoc. 56, 903–916 (2020).

    ADS 

    Google Scholar 

  • 97.

    Colson, T., Gregory, J., Dorney, J. & Russell, P. Topographic and soil maps do not accurately depict headwater stream networks. Natl Wetlands Newsl. 30, 25–28 (2008).

    Google Scholar 

  • 98.

    Allen, D. C. et al. Citizen scientists document long-term streamflow declines in intermittent rivers of the desert southwest, USA. Freshw. Sci. 38, 244–256 (2019).

    Google Scholar 

  • 99.

    Datry, T., Pella, H., Leigh, C., Bonada, N. & Hugueny, B. A landscape approach to advance intermittent river ecology. Freshw. Biol. 61, 1200–1213 (2016).

    Google Scholar 

  • 100.

    McShane, R. R., Sando, R. & Hockman-Wert, D. P. Streamflow observation points in the Pacific Northwest, 1977–2016. U.S. Geological Survey data release https://doi.org/10.5066/F7BV7FSP (2017).

  • 101.

    Observatoire National des étiages (ONDE) (French Office for Biodiversity (OFC), accessed 21 June 2020); https://onde.eaufrance.fr/content/t%C3%A9l%C3%A9charger-les-donn%C3%A9es-des-campagnes-par-ann%C3%A9e

  • 102.

    Aguas Continentales de Argentina (Argentinian National Geographic Institute (IGN), accessed 11 June 2020); https://www.ign.gob.ar/NuestrasActividades/InformacionGeoespacial/CapasSIG

  • 103.

    Australian Hydrological Geospatial Fabric (Geofabric, v. 3.2) (Australian Bureau of Meteorology (BOM), accessed 11 June 2020); ftp://ftp.bom.gov.au/anon/home/geofabric/Geofabric_Metadata_GDB_V3_2.zip

  • 104.

    Base Cartográfica Continua do Brasil (BC250, 2019 version) (Brazilian Institute of Geography and Statistics (IBGE); accessed 11 June 2020); https://geoftp.ibge.gov.br/cartas_e_mapas/bases_cartograficas_continuas/bc250/versao2019/

  • 105.

    National Hydrography Dataset Plus (NHDPlus, medium resolution, v.2) (US Geological Survey, accessed 11 June 2020); https://www.epa.gov/waterdata/get-nhdplus-national-hydrography-dataset-plus-data

  • 106.

    Busch, M. H. et al. What’s in a name? Patterns, trends, and suggestions for defining non-perennial rivers and streams. Water 12, 1980 (2020).

    PubMed 

    Google Scholar 

  • 107.

    Datry, T. et al. Science and management of intermittent rivers and ephemeral streams (SMIRES). Res. Ideas Outcomes 3, e21774 (2017).

    Google Scholar 

  • 108.

    Trabucco, A. & Zomer, R. J. Global high-resolution soil–water balance. https://doi.org/10.6084/m9.figshare.7707605.v3 (2010).

  • 109.

    Hall, D. K. & Riggs, G. A. MODIS/Aqua Snow Cover Daily L3 Global 500m SIN Grid, Version 6. [2002–2015] (NASA National Snow and Ice Data Center Distributed Active Archive Center, accessed 15 February 2017); https://doi.org/10.5067/MODIS/MYD10A1.006

  • 110.

    Fan, Y., Li, H. & Miguez-Macho, G. Global patterns of groundwater table depth. Science 339, 940–943 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 111.

    Fluet-Chouinard, E., Lehner, B., Rebelo, L.-M., Papa, F. & Hamilton, S. K. Development of a global inundation map at high spatial resolution from topographic downscaling of coarse-scale remote sensing data. Remote Sens. Environ. 158, 348–361 (2015).

    ADS 

    Google Scholar 

  • 112.

    Döll, P., Kaspar, F. & Lehner, B. A global hydrological model for deriving water availability indicators: model tuning and validation. J. Hydrol. 270, 105–134 (2003).

    ADS 

    Google Scholar 

  • 113.

    Bartholomé, E. & Belward, A. S. GLC2000: a new approach to global land cover mapping from Earth observation data. Int. J. Remote Sens. 26, 1959–1977 (2005).

    ADS 

    Google Scholar 

  • 114.

    GLIMS and National Snow and Ice Data Center. GLIMS Glacier Database V1 (2012); https://doi.org/10.7265/N5V98602

  • 115.

    Gruber, S. Derivation and analysis of a high-resolution estimate of global permafrost zonation. Cryosphere 6, 221–233 (2012).

    ADS 

    Google Scholar 

  • 116.

    Ramankutty, N. & Foley, J. A. Estimating historical changes in global land cover: croplands from 1700 to 1992. Glob. Biogeochem. Cycles 13, 997–1027 (1999).

    ADS 
    CAS 

    Google Scholar 

  • 117.

    Lehner, B. & Döll, P. Development and validation of a global database of lakes, reservoirs and wetlands. J. Hydrol. 296, 1–22 (2004).

    ADS 

    Google Scholar 

  • 118.

    Robinson, N., Regetz, J. & Guralnick, R. P. EarthEnv-DEM90: a nearly-global, void-free, multi-scale smoothed, 90m digital elevation model from fused ASTER and SRTM data. ISPRS J. Photogramm. Remote Sens. 87, 57–67 (2014).

    ADS 

    Google Scholar 

  • 119.

    Williams, P. W. & Ford, D. C. Global distribution of carbonate rocks. Z. Geomorphol. Suppl. 147, 1–2 (2006).

    Google Scholar 

  • 120.

    Hartmann, J. & Moosdorf, N. The new global lithological map database GLiM: a representation of rock properties at the Earth surface. Geochem. Geophys. Geosyst. 13, Q12004 (2012).

    ADS 

    Google Scholar 


  • Source: Resources - nature.com

    Diving into the global problem of technology waste

    Imagining the distant past — and finding keys to the future