in

Guiding urban water management towards 1.5 °C

[adace-ad id="91168"]
  • 1.

    Rogelj, J. et al. In Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change (eds Masson-Delmotte, V. et al.) In press (2018).

  • 2.

    Mo, W., Wang, R. & Zimmerman, J. B. Energy–water nexus analysis of enhanced water supply scenarios: a regional comparison of Tampa Bay, Florida, and San Diego, California. Environ. Sci. Technol. 48, 5883–5891 (2014).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Sambito, M. & Freni, G. LCA methodology for the quantification of the carbon footprint of the integrated urban water system. Water 9, 395 (2017).

    Article 
    CAS 

    Google Scholar 

  • 4.

    Meron, N., Blass, V. & Thoma, G. A national-level LCA of a water supply system in a Mediterranean semi-arid climate—Israel as a case study. Int. J. Life Cycle Assess. 25, 1133–1144 (2020).

  • 5.

    Hsien, C., Low, J. S. C., Fuchen, S. C. & Han, T. W. Life cycle assessment of water supply in Singapore—a water-scarce urban city with multiple water sources. Resour. Conserv. Recycl. 151, 104476 (2019).

    Article 

    Google Scholar 

  • 6.

    Slagstad, H. & Brattebø, H. Life cycle assessment of the water and wastewater system in Trondheim, Norway—a case study: Case Study. Urban water J. 11, 323–334 (2014).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Parkinson, S. C. et al. Climate and human development impacts on municipal water demand: a spatially-explicit global modeling framework. Environ. Model. Softw. 85, 266–278 (2016).

    Article 

    Google Scholar 

  • 8.

    Rothausen, S. G. S. A. & Conway, D. Greenhouse-gas emissions from energy use in the water sector. Nat. Clim. Chang. 1, 210 (2011).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Parkinson, S. et al. Balancing clean water-climate change mitigation trade-offs. Environ. Res. Lett. 14, 014009 (2019).

    CAS 
    Article 

    Google Scholar 

  • 10.

    McDonald, R. I. et al. Water on an urban planet: Urbanization and the reach of urban water infrastructure. Glob. Environ. Chang. 27, 96–105 (2014).

    Article 

    Google Scholar 

  • 11.

    Pal, A., He, Y., Jekel, M., Reinhard, M. & Gin, K. Y.-H. Emerging contaminants of public health significance as water quality indicator compounds in the urban water cycle. Environ. Int. 71, 46–62 (2014).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Escriva-Bou, A., Lund, J. R. & Pulido-Velazquez, M. Saving energy from urban water demand management. Water Resour. Res. 54, 4265–4276 (2018).

    Article 

    Google Scholar 

  • 13.

    Dworak, T. et al. EU Water Saving Potential (Institute for International and European Environmental Policy, 2007).

  • 14.

    Flörke, M. et al. Domestic and industrial water uses of the past 60 years as a mirror of socio-economic development: A global simulation study. Glob. Environ. Chang. 23, 144–156 (2013).

    Article 

    Google Scholar 

  • 15.

    House-Peters, L. A. & Chang, H. Urban water demand modeling: review of concepts, methods, and organizing principles. Water Resour. Res. 47, W05401 (2011).

  • 16.

    Gracia-De-Rentería, P., Barberán, R. & Mur, J. Urban water demand for industrial uses in Spain. Urban Water J. 16, 114–124 (2019).

    Article 

    Google Scholar 

  • 17.

    Vassolo, S. & Döll, P. Global-scale gridded estimates of thermoelectric power and manufacturing water use. Water Resour. Res. 41, W04010 (2005).

  • 18.

    Dieu-Hang, T., Grafton, R. Q., Martínez-Espiñeira, R. & Garcia-Valiñas, M. Household adoption of energy and water-efficient appliances: An analysis of attitudes, labelling and complementary green behaviours in selected OECD countries. J. Environ. Manag. 197, 140–150 (2017).

    Article 

    Google Scholar 

  • 19.

    Attari, S. Z. Perceptions of water use. Proc. Natl Acad. Sci. 111, 5129–5134 (2014).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Gonzales, P. & Ajami, N. Social and structural patterns of drought-related water conservation and rebound. Water Resour. Res. 53, 10619–10634 (2017).

    Article 

    Google Scholar 

  • 21.

    Grafton, R. Q. et al. The paradox of irrigation efficiency. Science 361, 748–750 (2018).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Britton, T. C., Stewart, R. A. & O’Halloran, K. R. Smart metering: enabler for rapid and effective post meter leakage identification and water loss management. J. Clean. Prod. 54, 166–176 (2013).

    Article 

    Google Scholar 

  • 23.

    Cominola, A. et al. Long-term water conservation is fostered by smart meter-based feedback and digital user engagement. npj Clean Water 4, 1–10 (2021).

    Article 

    Google Scholar 

  • 24.

    Gurung, T. R., Stewart, R. A., Beal, C. D. & Sharma, A. K. Smart meter enabled informatics for economically efficient diversified water supply infrastructure planning. J. Clean. Prod. 135, 1023–1033 (2016).

    Article 

    Google Scholar 

  • 25.

    Kajenthira, A., Siddiqi, A. & Anadon, L. D. A new case for promoting wastewater reuse in Saudi Arabia: Bringing energy into the water equation. J. Environ. Manag. 102, 184–192 (2012).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Stillwell, A. S. et al. An integrated energy, carbon, water, and economic analysis of reclaimed water use in urban settings: a case study of Austin, Texas. J. Water Reuse Desalin. 1, 208–223 (2011).

    Article 

    Google Scholar 

  • 27.

    Stillwell, A. S. & Webber, M. E. Geographic, technologic, and economic analysis of using reclaimed water for thermoelectric power plant cooling. Environ. Sci. Technol. 48, 4588–4595 (2014).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Kavvada, O., Nelson, K. L. & Horvath, A. Spatial optimization for decentralized non-potable water reuse. Environ. Res. Lett. 13, 64001 (2018).

    Article 

    Google Scholar 

  • 29.

    Santhosh, A., Farid, A. M. & Youcef-Toumi, K. Real-time economic dispatch for the supply side of the energy-water nexus. Appl. Energy 122, 42–52 (2014).

    Article 

    Google Scholar 

  • 30.

    Gomez Sanabria, A., Höglund Isaksson, L., Rafaj, P. & Schöpp, W. Carbon in global waste and wastewater flows–its potential as energy source under alternative future waste management regimes. Adv. Geosci. 45, 105–113 (2018).

    Article 

    Google Scholar 

  • 31.

    Song, X. et al. Resource recovery from wastewater by anaerobic membrane bioreactors: Opportunities and challenges. Bioresour. Technol. 270, 669–677 (2018).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Qadir, M. et al. Global and regional potential of wastewater as a water, nutrient and energy source. Nat Resour. Forum 44, 40–51 (2020).

    Article 

    Google Scholar 

  • 33.

    McCarty, P. L., Bae, J. & Kim, J. Domestic wastewater treatment as a net energy producer: Can this be achieved? Environ. Sci. Technol. 45, 7100–7106 (2011).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Tubiello, F. N. et al. The FAOSTAT database of greenhouse gas emissions from agriculture. Environ. Res. Lett. 8, 15009 (2013).

    Article 

    Google Scholar 

  • 35.

    Bertrand, A., Aggoune, R. & Maréchal, F. In-building waste water heat recovery: An urban-scale method for the characterisation of water streams and the assessment of energy savings and costs. Appl. Energy 192, 110–125 (2017).

    Article 

    Google Scholar 

  • 36.

    Guo, X. & Hendel, M. Urban water networks as an alternative source for district heating and emergency heat-wave cooling. Energy 145, 79–87 (2018).

    Article 

    Google Scholar 

  • 37.

    Vesilind, P. Wastewater Treatment Plant Design Vol. 2 (IWA Publishing, 2003).

  • 38.

    Guo, T., Englehardt, J. & Wu, T. Review of cost versus scale: water and wastewater treatment and reuse processes. Water Sci. Technol. 69, 223–234 (2013).

    Article 

    Google Scholar 

  • 39.

    Liu, L. et al. The importance of system configuration for distributed direct potable water reuse. Nat. Sustain. 3, 548–555 (2020).

  • 40.

    Wu, D., Wang, H. & Seidu, R. Smart data driven quality prediction for urban water source management. Futur. Gener. Comput. Syst. 107, 418–432 (2020).

    Article 

    Google Scholar 

  • 41.

    Lafortezza, R., Chen, J., Van Den Bosch, C. K. & Randrup, T. B. Nature-based solutions for resilient landscapes and cities. Environ. Res. 165, 431–441 (2018).

    CAS 
    Article 

    Google Scholar 

  • 42.

    Engström, R., Howells, M., Mörtberg, U. & Destouni, G. Multi-functionality of nature-based and other urban sustainability solutions: New York City study. L. Degrad. Dev. 29, 3653–3662 (2018).

    Article 

    Google Scholar 

  • 43.

    Kernan, R., Liu, X., McLoone, S. & Fox, B. Demand side management of an urban water supply using wholesale electricity price. Appl. Energy 189, 395–402 (2017).

    Article 

    Google Scholar 

  • 44.

    Menke, R., Abraham, E., Parpas, P. & Stoianov, I. Demonstrating demand response from water distribution system through pump scheduling. Appl. Energy 170, 377–387 (2016).

    Article 

    Google Scholar 

  • 45.

    Davison-Kernan, R., Liu, X., McLoone, S. & Fox, B. Quantification of wind curtailment on a medium-sized power system and mitigation using municipal water pumping load. Renew. Sustain. Energy Rev. 112, 499–507 (2019).

    Article 

    Google Scholar 

  • 46.

    Wang, D. et al. Hierarchical market integration of responsive loads as spinning reserve. Appl. Energy 104, 229–238 (2013).

  • 47.

    ENBALA. Pennsylvania American Water Connects to the Smart Grid (ENBALA, 2018).

  • 48.

    Muhanji, S. O., Barrows, C., Macknick, J. & Farid, A. M. An enterprise control assessment case study of the energy–water nexus for the ISO New England system. Renew. Sustain. Energy Rev. 141, 110766 (2021).

    Article 

    Google Scholar 

  • 49.

    Oikonomou, K. & Parvania, M. Optimal coordinated operation of interdependent power and water distribution systems. IEEE Trans. Smart Grid 11, 4784–4794 (2020).

    Article 

    Google Scholar 

  • 50.

    Tilmant, A. & Kinzelbach, W. The cost of noncooperation in international river basins. Water Resour. Res. 48, https://doi.org/10.1029/2011WR011034 (2012).

  • 51.

    Vinca, A. et al. Transboundary cooperation a potential route to sustainable development in the Indus Basin. Nat. Sustain. 4, 331–339 (2020).

  • 52.

    Spang, E. S. & Loge, F. J. A high-resolution approach to mapping energy flows through water infrastructure systems. J. Ind. Ecol. 19, 656–665 (2015).

    Article 

    Google Scholar 

  • 53.

    Bartos, M. D. & Chester, M. V. The conservation nexus: valuing interdependent water and energy savings in Arizona. Environ. Sci. Technol. 48, 2139–2149 (2014).

    CAS 
    Article 

    Google Scholar 

  • 54.

    Wada, Y. et al. Co-designing Indus Water-Energy-Land. Futures One Earth 1, 185–194 (2019).

    Article 

    Google Scholar 

  • 55.

    Inland Empire Utility Agency. Chino Basin Watermaster Optimum Basin Management Program Update (Inland Empire Utility Agency, 2020).

  • 56.

    Helm, D. Catchment Management, Abstraction and Flooding: The Case for a Catchment System Operator and Coordinated Competition (New College, 2015).

  • 57.

    IWA. Action Agenda for Basin-Connected Cities: Influencing and Activating Urban Stakeholders to be Water Stewards in their Basins (IWA, 2018).


  • Source: Resources - nature.com

    Revisiting a quantum past for a fusion future

    From NYC zookeeper to aspiring architect