in

In-stream turbines for rethinking hydropower development in the Amazon basin

  • 1.

    Renewable Capacity Highlights (International Renewable Energy Agency, 2019); https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Mar/RE_capacity_highlights_2019.pdf

  • 2.

    Renewable Energy Highlights (International Renewable Energy Agency, 2019); https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Jul/IRENA_Renewable_energy_highlights_July_2019.pdf

  • 3.

    Moran, E. F., Lopez, M. C., Moore, N., Müller, N. & Hyndman, D. W. Sustainable hydropower in the 21st century. Proc. Natl Acad. Sci. USA 115, 201809426 (2018).

    Article 
    CAS 

    Google Scholar 

  • 4.

    Gernaat, D. E. H. J., Bogaart, P. W., Vuuren, D. P. V., Biemans, H. & Niessink, R. High-resolution assessment of global technical and economic hydropower potential. Nat. Energy 2, 821–828 (2017).

    Article 

    Google Scholar 

  • 5.

    Winemiller, K. O. et al. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351, 128–129 (2016).

    Article 
    CAS 

    Google Scholar 

  • 6.

    Pokhrel, Y., Shin, S., Lin, Z., Yamazaki, D. & Qi, J. Potential disruption of flood dynamics in the Lower Mekong River Basin due to upstream flow regulation. Sci. Rep. 8, 17767 (2018).

    Article 
    CAS 

    Google Scholar 

  • 7.

    Pokhrel, Y. et al. A review of the integrated effects of changing climate, land use, and dams on Mekong River Hydrology. Water 10, 266 (2018).

    Article 

    Google Scholar 

  • 8.

    Stone, R. Dam-building threatens Mekong fisheries. Science 354, 1084–1085 (2016).

    Article 
    CAS 

    Google Scholar 

  • 9.

    Fearnside, P. M. & Pueyo, S. Greenhouse-gas emissions from tropical dams. Nat. Clim. Change 2, 382 (2012).

    Article 
    CAS 

    Google Scholar 

  • 10.

    O’Connor, J. E., Duda, J. J. & Grant, G. E. 1000 dams down and counting. Science 348, 496–497 (2015).

    Article 

    Google Scholar 

  • 11.

    Timpe, K. & Kaplan, D. The changing hydrology of a dammed Amazon. Sci. Adv. 3, e1700611 (2017).

    Article 

    Google Scholar 

  • 12.

    Latrubesse, E. M. et al. Damming the rivers of the Amazon basin. Nature 546, 363–369 (2017).

    Article 
    CAS 

    Google Scholar 

  • 13.

    Forsberg, B. R. et al. The potential impact of new Andean dams on Amazon fluvial ecosystems. PLoS ONE 12, e0182254 (2017).

    Article 
    CAS 

    Google Scholar 

  • 14.

    Finer, M. & Jenkins, C. N. Proliferation of hydroelectric dams in the Andean Amazon and implications for Andes-Amazon connectivity. PLoS ONE 7, e35126 (2012).

    Article 
    CAS 

    Google Scholar 

  • 15.

    Anderson, E. P. et al. Fragmentation of Andes-to-Amazon connectivity by hydropower dams. Sci. Adv. 4, eaao1642 (2018).

    Article 

    Google Scholar 

  • 16.

    Pokhrel, Y. et al. Model estimates of sea-level change due to anthropogenic impacts on terrestrial water storage. Nat. Geosci. 5, 389–392 (2012).

    Article 
    CAS 

    Google Scholar 

  • 17.

    Eiriksdottir, E. S., Oelkers, E. H., Hardardottir, J. & Gislason, S. R. The impact of damming on riverine fluxes to the ocean: a case study from Eastern Iceland. Water Res. 113, 124–138 (2017).

    Article 
    CAS 

    Google Scholar 

  • 18.

    Yang, H. F. et al. Erosion potential of the Yangtze Delta under sediment starvation and climate change. Sci. Rep. 7, 10535 (2017).

    Article 
    CAS 

    Google Scholar 

  • 19.

    Cochrane, S. M. V., Matricardi, E. A. T., Numata, I. & Lefebvre, P. A. Landsat-based analysis of mega dam flooding impacts in the Amazon compared to associated environmental impact assessments: upper Madeira River example 2006–2015. Remote Sens. Appl. Soc. Environ. 7, 1–8 (2017).

    Google Scholar 

  • 20.

    Fearnside, P. M. Impacts of Brazil’s Madeira River dams: unlearned lessons for hydroelectric development in Amazonia. Environ. Sci. Policy 38, 164–172 (2014).

    Article 

    Google Scholar 

  • 21.

    VanZwieten, J. et al. In-stream hydrokinetic power: review and appraisal. J. Energy Eng. 141, 04014024 (2014).

    Article 

    Google Scholar 

  • 22.

    Pokhrel, Y. N., Oki, T. & Kanae, S. A grid based assessment of global theoretical hydropower potential. Annu. J. Hydraul. Eng. 52, 7–12 (2008).

    Article 

    Google Scholar 

  • 23.

    Zhou, Y. et al. A comprehensive view of global potential for hydro-generated electricity. Energy Environ. Sci. 8, 2622–2633 (2015).

    Article 

    Google Scholar 

  • 24.

    Hoes, O. A. C., Meijer, L. J. J., Van Der Ent, R. J. & Van De Giesen, N. C. Systematic high-resolution assessment of global hydropower potential. PLoS ONE 12, e0171844 (2017).

    Article 
    CAS 

    Google Scholar 

  • 25.

    Bryden, I. G. & Couch, S. J. ME1—marine energy extraction: tidal resource analysis. Renew. Energy 31, 133–139 (2006).

    Article 

    Google Scholar 

  • 26.

    Karsten, R., Swan, A. & Culina, J. Assessment of arrays of in-stream tidal turbines in the Bay of Fundy. Philos. Trans. R. Soc. A 371, 20120189 (2013).

    Article 

    Google Scholar 

  • 27.

    Malki, R., Masters, I., Williams, A. J. & Nick Croft, T. Planning tidal stream turbine array layouts using a coupled blade element momentum—computational fluid dynamics model. Renew. Energy 63, 46–54 (2014).

    Article 

    Google Scholar 

  • 28.

    Vennell, R., Funke, S. W., Draper, S., Stevens, C. & Divett, T. Designing large arrays of tidal turbines: a synthesis and review. Renew. Sustain. Energy Rev. 41, 454–472 (2015).

    Article 

    Google Scholar 

  • 29.

    Assessment and Mapping of the Riverine Hydrokinetic Energy Resource in the Continental United States Report No. 1026880 (Electrical Power Research Institute, 2012).

  • 30.

    Ortega-Achury, S., McAnally, W., Davis, T. & Martin, J. Hydrokinetic Power Review (Mississippi State Univ., 2010).

  • 31.

    Garrett, C. & Cummins, P. The efficiency of a turbine in a tidal channel. J. Fluid Mech. 588, 243–251 (2007).

    Article 

    Google Scholar 

  • 32.

    Garrett, C. & Cummins, P. Limits to tidal current power. Renew. Energy 33, 2485–2490 (2008).

    Article 

    Google Scholar 

  • 33.

    Miller, G., Franceschi, J., Lese, W. & Rico, J. The Allocation of Kinetic Hydro Energy Conversion Systems (KHECS) in USA Drainage Basins: Regional Resource and Potential Power (USDA,1986).

  • 34.

    Chaudhari, S., Pokhrel, Y., Moran, E. F. & Miguez-Macho, G. Multi-decadal hydrologic change and variability in the Amazon River Basin: understanding terrestrial water storage variations and drought characteristics. Hydrol. Earth Syst. Sci. 23, 2841–2862 (2019).

    Article 

    Google Scholar 

  • 35.

    Pokhrel, Y. N., Fan, Y., Miguez-Macho, G., Yeh, P. J. F. & Han, S. C. The role of groundwater in the Amazon water cycle: 3. Influence on terrestrial water storage computations and comparison with GRACE. J. Geophys. Res. Atmos. 118, 3233–3244 (2013).

    Article 

    Google Scholar 

  • 36.

    Ten-Year Energy Expansion Plan 2029 (Ministry of Mines and Energy, 2019).

  • 37.

    Ansar, A., Flyvbjerg, B., Budzier, A. & Lunn, D. Should we build more large dams? The actual costs of hydropower megaproject development. Energy Policy 69, 43–56 (2014).

    Article 

    Google Scholar 

  • 38.

    Petheram, C. & McMahon, T. A. Dams, dam costs and damnable cost overruns. J. Hydrol. X 3, 100026 (2019).

    Article 

    Google Scholar 

  • 39.

    Awojobi, O. & Jenkins, G. P. Were the hydro dams financed by the World Bank from 1976 to 2005 worthwhile? Energy Policy 86, 222–232 (2015).

    Article 

    Google Scholar 

  • 40.

    Previsic, M., Bedard, R. & Polagye, B. System Level Design, Performance, Cost and Economic Assessment—Alaska River In-stream Power Plants (EPRI, 2008).

  • 41.

    Copping, A. E. & Hemery, L. G. OES-Environmental 2020 State of the Science Report: Environmental Effects of Marine Renewable Energy Development Around the World (USDOE, 2020); https://doi.org/10.2172/1632878

  • 42.

    Davidson, E. A. et al. The Amazon basin in transition. Nature 481, 321–328 (2012).

    Article 
    CAS 

    Google Scholar 

  • 43.

    Lovejoy, T. E. & Nobre, C. Amazon tipping point. Sci. Adv. 4, eaat2340 (2018).

  • 44.

    Malhi, Y. et al. Climate change, deforestation, and the fate of the Amazon. Science 319, 169–172 (2008).

    Article 
    CAS 

    Google Scholar 

  • 45.

    Miguez-Macho, G. & Fan, Y. The role of groundwater in the Amazon water cycle: 1. Influence on seasonal streamflow, flooding and wetlands. J. Geophys. Res. Atmos. https://doi.org/10.1029/2012JD017539 (2012).

  • 46.

    Shin, S., Pokhrel, Y. & Miguez-Macho, G. High resolution modeling of reservoir release and storage dynamics at the continental scale. Water Resour. Res. 55, 787–810 (2019).

    Article 

    Google Scholar 

  • 47.

    Pokhrel, Y. et al. Incorporating anthropogenic water regulation modules into a land surface model. J. Hydrometeorol. 13, 255–269 (2012).

    Article 

    Google Scholar 

  • 48.

    Pokhrel, Y. N., Fan, Y. & Miguez-Macho, G. Potential hydrologic changes in the Amazon by the end of the 21st century and the groundwater buffer. Environ. Res. Lett. 9, 084004 (2014).

    Article 

    Google Scholar 

  • 49.

    Yamazaki, D., Oki, T. & Kanae, S. Deriving a global river network map and its sub-grid topographic characteristics from a fine-resolution flow direction map. Hydrol. Earth Syst. Sci. 13, 2241–2251 (2009).

    Article 

    Google Scholar 

  • 50.

    Lehner, B., Verdin, K. & Jarvis, A. New global hydrography derived from spaceborne elevation data. Eos 89, 93–94 (2008).

    Article 

    Google Scholar 

  • 51.

    Coe, M. T., Costa, M. H. & Howard, E. A. Simulating the surface waters of the Amazon River basin: impacts of new river geomorphic and flow parameterizations. Hydrol. Process. 22, 2542–2553 (2008).

    Article 

    Google Scholar 

  • 52.

    Mulligan, M., Saenz-Cruz, L., van Soesbergen, A., Smith, V. T. & Zurita, L. Global Dams Database and Geowiki Version 1 (Geodata, 2009); http://geodata.policysupport.org/dams

  • 53.

    Zarfl, C., Lumsdon, A. E., Berlekamp, J., Tydecks, L. & Tockner, K. A global boom in hydropower dam construction. Aquat. Sci. 77, 161–170 (2015).

    Article 

    Google Scholar 

  • 54.

    Guney, M. S. Evaluation and measures to increase performance coefficient of hydrokinetic turbines. Renew. Sustain. Energy Rev. 15, 3669–3675 (2011).

    Article 

    Google Scholar 

  • 55.

    Shin, S. et al. High resolution modeling of river–floodplain–reservoir inundation dynamics in the Mekong River Basin. Water Resour. Res. 56, e2019WR026449 (2020).

    Article 

    Google Scholar 

  • 56.

    Previsic, M. Cost Breakdown Structure for River Current Device (Sandia National Laboratory, 2012).

  • 57.

    Renewable Power Generation Costs in 2019 (International Renewable Energy Agency, 2019); https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Jun/IRENA_Power_Generation_Costs_2019.pdf

  • 58.

    Gridded Population of the World v.4 (CIESIN, 2016); https://doi.org/10.7927/H4SF2T42


  • Source: Resources - nature.com

    The serotonin transporter gene and female personality variation in a free-living passerine

    Keeping humanity central to solving climate change