Drought in Central‐Northern Europe (EDO, 2018); https://edo.jrc.ec.europa.eu/documents/news/EDODroughtNews201809_Central_North_Europe.pdf
Drought in Europe (EDO, 2019); https://edo.jrc.ec.europa.eu/documents/news/EDODroughtNews201908_Europe.pdf
Kovats, R. S. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Fields, C. B. et al.) 1267–1326 (Cambridge Univ. Press, 2014).
Spinoni, J., Naumann, G. & Vogt, J. V. Pan-European seasonal trends and recent changes of drought frequency and severity. Glob. Planet. Change 148, 113–130 (2017).
Google Scholar
Vörösmarty, C. J., Green, P., Salisbury, J. & Lammers, R. B. Global water resources: vulnerability from climate change and population growth. Science 289, 284–288 (2000).
Google Scholar
Döll, P., Fiedler, K. & Zhang, J. Global-scale analysis of river flow alterations due to water withdrawals and reservoirs. Hydrol. Earth Syst. Sci. 13, 2413 (2009).
Google Scholar
Wada, Y., Van Beek, L. P., Wanders, N. & Bierkens, M. F. Human water consumption intensifies hydrological drought worldwide. Environ. Res. Lett. 8, 034036 (2013).
Google Scholar
Tijdeman, E., Hannaford, J. & Stahl, K. Human influences on streamflow drought characteristics in England and Wales. Hydrol. Earth Syst. Sci. 22, 1051–1064 (2018).
Google Scholar
Beniston, M. et al. Future extreme events in European climate: an exploration of regional climate model projections. Climatic Change 81, 71–95 (2007).
Google Scholar
Nikulin, G., Kjellstrom, E., Hansson, U. L. F., Strandberg, G. & Ullerstig, A. Evaluation and future projections of temperature, precipitation and wind extremes over Europe in an ensemble of regional climate simulations. Tellus A 63, 41–55 (2011).
Google Scholar
Forzieri, G. et al. Ensemble projections of future streamflow droughts in Europe. Hydrol. Earth Syst. Sci. 18, 85–108 (2014).
Google Scholar
Samaniego, L. et al. Anthropogenic warming exacerbates European soil moisture droughts. Nat. Clim. Change 8, 421 (2018).
Google Scholar
Marx, A. et al. Climate change alters low flows in Europe under global warming of 1.5, 2, and 3 °C. Hydrol. Earth Syst. Sci. 22, 1017–1032 (2018).
Google Scholar
Stahl, K. et al. Impacts of European drought events: insights from an international database of text-based reports. Nat. Hazards Earth Syst. Sci. 16, 801–819 (2016).
Google Scholar
Mapping the Impacts of Natural hazards and Technological Accidents in Europe: An Overview of the Last Decade Technical Report No. 13/2010 (EEA, 2011); http://op.europa.eu/en/publication-detail/-/publication/4f5878ba-0947-4fb6-964b-8818cfda3de7/language-en
Schär, C. et al. The role of increasing temperature variability in European summer heatwaves. Nature 427, 332–336 (2004).
Google Scholar
Gil, M., Garrido, A. & Hernández-Mora, N. Direct and indirect economic impacts of drought in the agri-food sector in the Ebro River basin (Spain). Nat. Hazards Earth Syst. Sci. 13, 2679–2694 (2013).
Google Scholar
García-León, D., Standardi, G. & Staccione, A. An integrated approach for the estimation of agricultural drought costs. Land Use Policy 100, 104923 (2021).
Google Scholar
Byers, E. A., Coxon, G., Freer, J. & Hall, J. W. Drought and climate change impacts on cooling water shortages and electricity prices in Great Britain. Nat. Commun. 11, 2239 (2020).
Google Scholar
Salmoral, G., Rey, D., Rudd, A., Margon, Pde & Holman, I. A probabilistic risk assessment of the national economic impacts of regulatory drought management on irrigated agriculture. Earths Future 7, 178–196 (2019).
Google Scholar
Naumann, G., Spinoni, J., Vogt, J. V. & Barbosa, P. Assessment of drought damages and their uncertainties in Europe. Environ. Res. Lett. 10, 124013 (2015).
Google Scholar
Stagge, J. H., Kohn, I., Tallaksen, L. M. & Stahl, K. Modeling drought impact occurrence based on meteorological drought indices in Europe. J. Hydrol. 530, 37–50 (2015).
Google Scholar
Blauhut, V. et al. Estimating drought risk across Europe from reported drought impacts, drought indices, and vulnerability factors. Hydrol. Earth Syst. Sci. 20, 2779–2800 (2016).
Google Scholar
Freire-González, J., Decker, C. & Hall, J. W. The economic impacts of droughts: a framework for analysis. Ecol. Econ. 132, 196–204 (2017).
Google Scholar
The 2015 Ageing Report: Underlying Assumptions and Projection Methodologies (European Commission, 2014).
Berg, A. et al. Land–atmosphere feedbacks amplify aridity increase over land under global warming. Nat. Clim. Change 6, 869–874 (2016).
Google Scholar
Dosio, A. & Fischer, E. M. Will half a degree make a difference? Robust projections of indices of mean and extreme climate in Europe under 1.5 °C, 2 °C, and 3 °C global warming. Geophys. Res. Lett. 45, 935–944 (2018).
Google Scholar
Jacob, D. et al. Climate impacts in Europe under +1.5 °C global warming. Earths Future 6, 264–285 (2018).
Google Scholar
Alfieri, L., Dottori, F., Betts, R., Salamon, P. & Feyen, L. Multi-model projections of river flood risk in Europe under global warming. Climate 6, 6 (2018).
Google Scholar
Vousdoukas, M. I. et al. Climatic and socioeconomic controls of future coastal flood risk in Europe. Nat. Clim. Change 8, 776–780 (2018).
Google Scholar
Estrela, T. & Vargas, E. Drought management plans in the European Union. The case of Spain. Water Resour. Manag. 26, 1537–1553 (2012).
Google Scholar
Dellink, R., Chateau, J., Lanzi, E. & Magné, B. Long-term economic growth projections in the shared socioeconomic pathways. Glob. Environ. Change 42, 200–214 (2017).
Google Scholar
Christensen, P., Gillingham, K. & Nordhaus, W. Uncertainty in forecasts of long-run economic growth. Proc. Natl Acad. Sci. USA 115, 5409–5414 (2018).
Google Scholar
Global Assessment Report on Disaster Risk Reduction 2019 (United Nations Office for Disaster Risk Reduction, 2019).
Forzieri, G. et al. Escalating impacts of climate extremes on critical infrastructures in Europe. Glob. Environ. Change 48, 97–107 (2018).
Google Scholar
Erfurt, M., Glaser, R. & Blauhut, V. Changing impacts and societal responses to drought in southwestern Germany since 1800. Reg. Environ. Change 19, 2311–2323 (2019).
Swiss Re The hidden risks of climate change: an increase in property damage from soil subsidence in Europe. PreventionWeb https://www.preventionweb.net/publications/view/20623 (2011).
Formetta, G. & Feyen, L. Empirical evidence of declining global vulnerability to climate-related hazards. Glob. Environ. Change 57, 101920 (2019).
Google Scholar
Zhang, H., Li, Y. & Zhu, J.-K. Developing naturally stress-resistant crops for a sustainable agriculture. Nat. Plants 4, 989–996 (2018).
Google Scholar
Lohrmann, A., Farfan, J., Caldera, U., Lohrmann, C. & Breyer, C. Global scenarios for significant water use reduction in thermal power plants based on cooling water demand estimation using satellite imagery. Nat. Energy 4, 1040–1048 (2019).
Google Scholar
Hallegatte, S., Przyluski, V. & Vogt-Schilb, A. Building world narratives for climate change impact, adaptation and vulnerability analyses. Nat. Clim. Change 1, 151–155 (2011).
Google Scholar
Di Baldassarre, G. et al. Water shortages worsened by reservoir effects. Nat. Sustain. 1, 617–622 (2018).
Google Scholar
Guerreiro, S. B., Dawson, R. J., Kilsby, C., Lewis, E. & Ford, A. Future heat-waves, droughts and floods in 571 European cities. Environ. Res. Lett. 13, 034009 (2018).
Google Scholar
Vetter, T. et al. Evaluation of sources of uncertainty in projected hydrological changes under climate change in 12 large-scale river basins. Climatic Change 141, 419–433 (2017).
Google Scholar
Hattermann, F. F. et al. Sources of uncertainty in hydrological climate impact assessment: a cross-scale study. Environ. Res. Lett. 13, 015006 (2018).
Google Scholar
Hattermann, F. F. et al. Cross-scale intercomparison of climate change impacts simulated by regional and global hydrological models in eleven large river basins. Climatic Change 141, 561–576 (2017).
Google Scholar
Addressing the Challenge of Water Scarcity and Droughts in the European Union (European Commission, 2007); https://www.eea.europa.eu/policy-documents/addressing-the-challenge-of-water
Smith, A. B. U.S. Billion-Dollar Weather and Climate Disasters, 1980–Present (NCEI Accession 0209268) (NOAA, 2020); https://doi.org/10.25921/STKW-7W73
Martin-Ortega, J., González-Eguino, M. & Markandya, A. The costs of drought: the 2007/2008 case of Barcelona. Water Policy 14, 539–560 (2012).
Google Scholar
Zampieri, M. et al. Climate resilience of the top ten wheat producers in the Mediterranean and the Middle East. Reg. Environ. Change 20, 41 (2020).
Google Scholar
Vliet, M. T. H., van, Vögele, S. & Rübbelke, D. Water constraints on European power supply under climate change: impacts on electricity prices. Environ. Res. Lett. 8, 035010 (2013).
Google Scholar
Lehner, B., Czisch, G. & Vassolo, S. The impact of global change on the hydropower potential of Europe: a model-based analysis. Energy Policy 33, 839–855 (2005).
Google Scholar
Jenkins, K. Indirect economic losses of drought under future projections of climate change: a case study for Spain. Nat. Hazards 69, 1967–1986 (2013).
Google Scholar
Gall, M., Borden, K. A. & Cutter, S. L. When do losses count? Six fallacies of natural hazards loss data. Bull. Am. Meteorol. Soc. 90, 799–810 (2009).
Google Scholar
Xu, C. et al. Increasing impacts of extreme droughts on vegetation productivity under climate change. Nat. Clim. Change 9, 948–953 (2019).
Google Scholar
Choat, B. et al. Triggers of tree mortality under drought. Nature https://www.nature.com/articles/s41586-018-0240-x (2018).
Seidl, R. et al. Invasive alien pests threaten the carbon stored in Europe’s forests. Nat. Commun. 9, 1626 (2018).
Google Scholar
Sutanto, S. J., Vitolo, C., Di Napoli, C., D’Andrea, M. & Van Lanen, H. A. J. Heatwaves, droughts, and fires: exploring compound and cascading dry hazards at the pan-European scale. Environ. Int. 134, 105276 (2020).
Google Scholar
de Ruiter, M. C. et al. Why we can no longer ignore consecutive disasters. Earths Future 8, e2019EF001425 (2020).
Google Scholar
Ford, T. W. & Labosier, C. F. Meteorological conditions associated with the onset of flash drought in the eastern United States. Agric. For. Meteorol. 247, 414–423 (2017).
Google Scholar
Yuan, X., Wang, L. & Wood, E. F. Anthropogenic intensification of southern African flash droughts as exemplified by the 2015/16 season. Bull. Am. Meteorol. Soc. 99, S86–S90 (2018).
Google Scholar
Yuan, X., Ma, Z., Pan, M. & Shi, C. Microwave remote sensing of short-term droughts during crop growing seasons. Geophys. Res. Lett. 42, 4394–4401 (2015).
Google Scholar
Nguyen, H. et al. Using the evaporative stress index to monitor flash drought in Australia. Environ. Res. Lett. 14, 064016 (2019).
Google Scholar
Pendergrass, A. G. et al. Flash droughts present a new challenge for subseasonal-to-seasonal prediction. Nat. Clim. Change 10, 191–199 (2020).
Google Scholar
Hagenlocher, M. et al. Drought vulnerability and risk assessments: state of the art, persistent gaps, and research agenda. Environ. Res. Lett. 14, 083002 (2019).
Google Scholar
Jacobs-Crisioni, C. et al. The LUISA Territorial Reference Scenario 2017: A Technical Description (Publications Office of the European Union, 2017); https://ec.europa.eu/jrc/en/publication/luisa-territorial-reference-scenario-2017
Capros, P. et al. GEM-E3 Model Documentation (Publications Office of the European Union, 2013); https://publications.jrc.ec.europa.eu/repository/handle/111111111/32366
Keramidas, K., Kitous, A., Després, J. & Schmitz, A. POLES-JRC Model Documentation (Publications Office of the European Union, 2017); https://publications.jrc.ec.europa.eu/repository/handle/JRC113757
Feyen, L. & Dankers, R. Impact of global warming on streamflow drought in Europe. J. Geophys. Res. Atmos. 114, D17116 (2009).
Google Scholar
Tallaksen, L. M. & Van Lanen, H. A. Hydrological Drought: Processes and Estimation Methods for Streamflow and Groundwater Vol. 48 (Elsevier, 2004).
Lehner, B., Döll, P., Alcamo, J., Henrichs, T. & Kaspar, F. Estimating the impact of global change on flood and drought risks in Europe: a continental, integrated analysis. Climatic Change 75, 273–299 (2006).
Google Scholar
Roudier, P. et al. Projections of future floods and hydrological droughts in Europe under a +2 °C global warming. Climatic Change 135, 341–355 (2016).
Google Scholar
Knijff, J. M. V. D., Younis, J. & Roo, A. P. J. D. LISFLOOD: a GIS‐based distributed model for river basin scale water balance and flood simulation. Int. J. Geogr. Inf. Sci. 24, 189–212 (2010).
Google Scholar
Salamon, P. et al. EFAS Upgrade for the Extended Model Domain (Publications Office of the European Union, 2019); https://publications.jrc.ec.europa.eu/repository/handle/111111111/55587
Jacob, D. et al. EURO-CORDEX: new high-resolution climate change projections for European impact research. Reg. Environ. Change 14, 563–578 (2014).
Google Scholar
Knutti, R. et al. Meeting Report. In IPCC Expert Meeting on Assessing and Combining Multi Model Climate Projections (eds Stocker, T. F. et al.) (IPCC, 2010).
Shepherd, T. G. Storyline approach to the construction of regional climate change information. Proc. R. Soc. Lond. A 475, 20190013 (2019).
Mentaschi, L. et al. Independence of future changes of river runoff in Europe from the pathway to global warming. Climate 8, 22 (2020).
Google Scholar
Mentaschi, L. et al. The transformed-stationary approach: a generic and simplified methodology for non-stationary extreme value analysis. Hydrol. Earth Syst. Sci. 20, 3527–3547 (2016).
Google Scholar
Forzieri, G. et al. Resilience of Large Investments and Critical Infrastructures in Europe to Climate Change (Publications Office of the European Union, 2015); https://publications.jrc.ec.europa.eu/repository/handle/111111111/38894
Batista e Silva, F. et al. HARCI-EU, a harmonized gridded dataset of critical infrastructures in Europe for large-scale risk assessments. Sci. Data 6, 126 (2019).
Google Scholar
Doornkamp, J. C. Clay shrinkage induced subsidence. Geogr. J. 159, 196–202 (1993).
Google Scholar
Boivin, P., Garnier, P. & Tessier, D. Relationship between clay content, clay type, and shrinkage properties of soil samples. Soil Sci. Soc. Am. J. 68, 1145–1153 (2004).
Google Scholar
Hiederer, R. Mapping Soil Properties for Europe—Spatial Representation of Soil Database Attributes (Publications Office of the European Union, 2013); https://publications.jrc.ec.europa.eu/repository/handle/111111111/29170
Crilly, M. Analysis of a database of subsidence damage. Struct. Surv. 19, 7–15 (2001).
Google Scholar
Corti, T., Wüest, M., Bresch, D. & Seneviratne, S. I. Drought-induced building damages from simulations at regional scale. Nat. Hazards Earth Syst. Sci. 11, 3335–3342 (2011).
Google Scholar
Batista e Silva, F., Lavalle, C. & Koomen, E. A procedure to obtain a refined European land use/cover map. J. Land Use Sci. 8, 255–283 (2013).
Google Scholar
Florczyk, A. et al. GHSL Data Package 2019 (Publications Office of the European Union, 2019); https://publications.jrc.ec.europa.eu/repository/handle/111111111/56552
Kron, W., Steuer, M., Löw, P. & Wirtz, A. How to deal properly with a natural catastrophe database—analysis of flood losses. Nat. Hazards Earth Syst. Sci. 12, 535–550 (2012).
Felbermayr, G. & Gröschl, J. Naturally negative: the growth effects of natural disasters. J. Dev. Econ. 111, 92–106 (2014).
Google Scholar
Source: Resources - nature.com