in

Increased economic drought impacts in Europe with anthropogenic warming

[adace-ad id="91168"]
  • 1.

    Drought in Central‐Northern Europe (EDO, 2018); https://edo.jrc.ec.europa.eu/documents/news/EDODroughtNews201809_Central_North_Europe.pdf

  • 2.

    Drought in Europe (EDO, 2019); https://edo.jrc.ec.europa.eu/documents/news/EDODroughtNews201908_Europe.pdf

  • 3.

    Kovats, R. S. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Fields, C. B. et al.) 1267–1326 (Cambridge Univ. Press, 2014).

  • 4.

    Spinoni, J., Naumann, G. & Vogt, J. V. Pan-European seasonal trends and recent changes of drought frequency and severity. Glob. Planet. Change 148, 113–130 (2017).

    Article 

    Google Scholar 

  • 5.

    Vörösmarty, C. J., Green, P., Salisbury, J. & Lammers, R. B. Global water resources: vulnerability from climate change and population growth. Science 289, 284–288 (2000).

    Article 

    Google Scholar 

  • 6.

    Döll, P., Fiedler, K. & Zhang, J. Global-scale analysis of river flow alterations due to water withdrawals and reservoirs. Hydrol. Earth Syst. Sci. 13, 2413 (2009).

    Article 

    Google Scholar 

  • 7.

    Wada, Y., Van Beek, L. P., Wanders, N. & Bierkens, M. F. Human water consumption intensifies hydrological drought worldwide. Environ. Res. Lett. 8, 034036 (2013).

    Article 

    Google Scholar 

  • 8.

    Tijdeman, E., Hannaford, J. & Stahl, K. Human influences on streamflow drought characteristics in England and Wales. Hydrol. Earth Syst. Sci. 22, 1051–1064 (2018).

    Article 

    Google Scholar 

  • 9.

    Beniston, M. et al. Future extreme events in European climate: an exploration of regional climate model projections. Climatic Change 81, 71–95 (2007).

    Article 

    Google Scholar 

  • 10.

    Nikulin, G., Kjellstrom, E., Hansson, U. L. F., Strandberg, G. & Ullerstig, A. Evaluation and future projections of temperature, precipitation and wind extremes over Europe in an ensemble of regional climate simulations. Tellus A 63, 41–55 (2011).

    Article 

    Google Scholar 

  • 11.

    Forzieri, G. et al. Ensemble projections of future streamflow droughts in Europe. Hydrol. Earth Syst. Sci. 18, 85–108 (2014).

    Article 

    Google Scholar 

  • 12.

    Samaniego, L. et al. Anthropogenic warming exacerbates European soil moisture droughts. Nat. Clim. Change 8, 421 (2018).

    Article 

    Google Scholar 

  • 13.

    Marx, A. et al. Climate change alters low flows in Europe under global warming of 1.5, 2, and 3 °C. Hydrol. Earth Syst. Sci. 22, 1017–1032 (2018).

    Article 

    Google Scholar 

  • 14.

    Stahl, K. et al. Impacts of European drought events: insights from an international database of text-based reports. Nat. Hazards Earth Syst. Sci. 16, 801–819 (2016).

    Article 

    Google Scholar 

  • 15.

    Mapping the Impacts of Natural hazards and Technological Accidents in Europe: An Overview of the Last Decade Technical Report No. 13/2010 (EEA, 2011); http://op.europa.eu/en/publication-detail/-/publication/4f5878ba-0947-4fb6-964b-8818cfda3de7/language-en

  • 16.

    Schär, C. et al. The role of increasing temperature variability in European summer heatwaves. Nature 427, 332–336 (2004).

    Article 
    CAS 

    Google Scholar 

  • 17.

    Gil, M., Garrido, A. & Hernández-Mora, N. Direct and indirect economic impacts of drought in the agri-food sector in the Ebro River basin (Spain). Nat. Hazards Earth Syst. Sci. 13, 2679–2694 (2013).

    Article 

    Google Scholar 

  • 18.

    García-León, D., Standardi, G. & Staccione, A. An integrated approach for the estimation of agricultural drought costs. Land Use Policy 100, 104923 (2021).

    Article 

    Google Scholar 

  • 19.

    Byers, E. A., Coxon, G., Freer, J. & Hall, J. W. Drought and climate change impacts on cooling water shortages and electricity prices in Great Britain. Nat. Commun. 11, 2239 (2020).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Salmoral, G., Rey, D., Rudd, A., Margon, Pde & Holman, I. A probabilistic risk assessment of the national economic impacts of regulatory drought management on irrigated agriculture. Earths Future 7, 178–196 (2019).

    Article 

    Google Scholar 

  • 21.

    Naumann, G., Spinoni, J., Vogt, J. V. & Barbosa, P. Assessment of drought damages and their uncertainties in Europe. Environ. Res. Lett. 10, 124013 (2015).

    Article 

    Google Scholar 

  • 22.

    Stagge, J. H., Kohn, I., Tallaksen, L. M. & Stahl, K. Modeling drought impact occurrence based on meteorological drought indices in Europe. J. Hydrol. 530, 37–50 (2015).

    Article 

    Google Scholar 

  • 23.

    Blauhut, V. et al. Estimating drought risk across Europe from reported drought impacts, drought indices, and vulnerability factors. Hydrol. Earth Syst. Sci. 20, 2779–2800 (2016).

    Article 

    Google Scholar 

  • 24.

    Freire-González, J., Decker, C. & Hall, J. W. The economic impacts of droughts: a framework for analysis. Ecol. Econ. 132, 196–204 (2017).

    Article 

    Google Scholar 

  • 25.

    The 2015 Ageing Report: Underlying Assumptions and Projection Methodologies (European Commission, 2014).

  • 26.

    Berg, A. et al. Land–atmosphere feedbacks amplify aridity increase over land under global warming. Nat. Clim. Change 6, 869–874 (2016).

    Article 

    Google Scholar 

  • 27.

    Dosio, A. & Fischer, E. M. Will half a degree make a difference? Robust projections of indices of mean and extreme climate in Europe under 1.5 °C, 2 °C, and 3 °C global warming. Geophys. Res. Lett. 45, 935–944 (2018).

    Article 

    Google Scholar 

  • 28.

    Jacob, D. et al. Climate impacts in Europe under +1.5 °C global warming. Earths Future 6, 264–285 (2018).

    Article 

    Google Scholar 

  • 29.

    Alfieri, L., Dottori, F., Betts, R., Salamon, P. & Feyen, L. Multi-model projections of river flood risk in Europe under global warming. Climate 6, 6 (2018).

    Article 

    Google Scholar 

  • 30.

    Vousdoukas, M. I. et al. Climatic and socioeconomic controls of future coastal flood risk in Europe. Nat. Clim. Change 8, 776–780 (2018).

    Article 

    Google Scholar 

  • 31.

    Estrela, T. & Vargas, E. Drought management plans in the European Union. The case of Spain. Water Resour. Manag. 26, 1537–1553 (2012).

    Article 

    Google Scholar 

  • 32.

    Dellink, R., Chateau, J., Lanzi, E. & Magné, B. Long-term economic growth projections in the shared socioeconomic pathways. Glob. Environ. Change 42, 200–214 (2017).

    Article 

    Google Scholar 

  • 33.

    Christensen, P., Gillingham, K. & Nordhaus, W. Uncertainty in forecasts of long-run economic growth. Proc. Natl Acad. Sci. USA 115, 5409–5414 (2018).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Global Assessment Report on Disaster Risk Reduction 2019 (United Nations Office for Disaster Risk Reduction, 2019).

  • 35.

    Forzieri, G. et al. Escalating impacts of climate extremes on critical infrastructures in Europe. Glob. Environ. Change 48, 97–107 (2018).

    Article 

    Google Scholar 

  • 36.

    Erfurt, M., Glaser, R. & Blauhut, V. Changing impacts and societal responses to drought in southwestern Germany since 1800. Reg. Environ. Change 19, 2311–2323 (2019).

  • 37.

    Swiss Re The hidden risks of climate change: an increase in property damage from soil subsidence in Europe. PreventionWeb https://www.preventionweb.net/publications/view/20623 (2011).

  • 38.

    Formetta, G. & Feyen, L. Empirical evidence of declining global vulnerability to climate-related hazards. Glob. Environ. Change 57, 101920 (2019).

    Article 

    Google Scholar 

  • 39.

    Zhang, H., Li, Y. & Zhu, J.-K. Developing naturally stress-resistant crops for a sustainable agriculture. Nat. Plants 4, 989–996 (2018).

    Article 

    Google Scholar 

  • 40.

    Lohrmann, A., Farfan, J., Caldera, U., Lohrmann, C. & Breyer, C. Global scenarios for significant water use reduction in thermal power plants based on cooling water demand estimation using satellite imagery. Nat. Energy 4, 1040–1048 (2019).

    Article 

    Google Scholar 

  • 41.

    Hallegatte, S., Przyluski, V. & Vogt-Schilb, A. Building world narratives for climate change impact, adaptation and vulnerability analyses. Nat. Clim. Change 1, 151–155 (2011).

    Article 

    Google Scholar 

  • 42.

    Di Baldassarre, G. et al. Water shortages worsened by reservoir effects. Nat. Sustain. 1, 617–622 (2018).

    Article 

    Google Scholar 

  • 43.

    Guerreiro, S. B., Dawson, R. J., Kilsby, C., Lewis, E. & Ford, A. Future heat-waves, droughts and floods in 571 European cities. Environ. Res. Lett. 13, 034009 (2018).

    Article 

    Google Scholar 

  • 44.

    Vetter, T. et al. Evaluation of sources of uncertainty in projected hydrological changes under climate change in 12 large-scale river basins. Climatic Change 141, 419–433 (2017).

    CAS 
    Article 

    Google Scholar 

  • 45.

    Hattermann, F. F. et al. Sources of uncertainty in hydrological climate impact assessment: a cross-scale study. Environ. Res. Lett. 13, 015006 (2018).

    Article 

    Google Scholar 

  • 46.

    Hattermann, F. F. et al. Cross-scale intercomparison of climate change impacts simulated by regional and global hydrological models in eleven large river basins. Climatic Change 141, 561–576 (2017).

    Article 

    Google Scholar 

  • 47.

    Addressing the Challenge of Water Scarcity and Droughts in the European Union (European Commission, 2007); https://www.eea.europa.eu/policy-documents/addressing-the-challenge-of-water

  • 48.

    Smith, A. B. U.S. Billion-Dollar Weather and Climate Disasters, 1980–Present (NCEI Accession 0209268) (NOAA, 2020); https://doi.org/10.25921/STKW-7W73

  • 49.

    Martin-Ortega, J., González-Eguino, M. & Markandya, A. The costs of drought: the 2007/2008 case of Barcelona. Water Policy 14, 539–560 (2012).

    Article 

    Google Scholar 

  • 50.

    Zampieri, M. et al. Climate resilience of the top ten wheat producers in the Mediterranean and the Middle East. Reg. Environ. Change 20, 41 (2020).

    Article 

    Google Scholar 

  • 51.

    Vliet, M. T. H., van, Vögele, S. & Rübbelke, D. Water constraints on European power supply under climate change: impacts on electricity prices. Environ. Res. Lett. 8, 035010 (2013).

    Article 

    Google Scholar 

  • 52.

    Lehner, B., Czisch, G. & Vassolo, S. The impact of global change on the hydropower potential of Europe: a model-based analysis. Energy Policy 33, 839–855 (2005).

    Article 

    Google Scholar 

  • 53.

    Jenkins, K. Indirect economic losses of drought under future projections of climate change: a case study for Spain. Nat. Hazards 69, 1967–1986 (2013).

    Article 

    Google Scholar 

  • 54.

    Gall, M., Borden, K. A. & Cutter, S. L. When do losses count? Six fallacies of natural hazards loss data. Bull. Am. Meteorol. Soc. 90, 799–810 (2009).

    Article 

    Google Scholar 

  • 55.

    Xu, C. et al. Increasing impacts of extreme droughts on vegetation productivity under climate change. Nat. Clim. Change 9, 948–953 (2019).

    CAS 
    Article 

    Google Scholar 

  • 56.

    Choat, B. et al. Triggers of tree mortality under drought. Nature https://www.nature.com/articles/s41586-018-0240-x (2018).

  • 57.

    Seidl, R. et al. Invasive alien pests threaten the carbon stored in Europe’s forests. Nat. Commun. 9, 1626 (2018).

    Article 
    CAS 

    Google Scholar 

  • 58.

    Sutanto, S. J., Vitolo, C., Di Napoli, C., D’Andrea, M. & Van Lanen, H. A. J. Heatwaves, droughts, and fires: exploring compound and cascading dry hazards at the pan-European scale. Environ. Int. 134, 105276 (2020).

    Article 

    Google Scholar 

  • 59.

    de Ruiter, M. C. et al. Why we can no longer ignore consecutive disasters. Earths Future 8, e2019EF001425 (2020).

    Article 

    Google Scholar 

  • 60.

    Ford, T. W. & Labosier, C. F. Meteorological conditions associated with the onset of flash drought in the eastern United States. Agric. For. Meteorol. 247, 414–423 (2017).

    Article 

    Google Scholar 

  • 61.

    Yuan, X., Wang, L. & Wood, E. F. Anthropogenic intensification of southern African flash droughts as exemplified by the 2015/16 season. Bull. Am. Meteorol. Soc. 99, S86–S90 (2018).

    Article 

    Google Scholar 

  • 62.

    Yuan, X., Ma, Z., Pan, M. & Shi, C. Microwave remote sensing of short-term droughts during crop growing seasons. Geophys. Res. Lett. 42, 4394–4401 (2015).

    Article 

    Google Scholar 

  • 63.

    Nguyen, H. et al. Using the evaporative stress index to monitor flash drought in Australia. Environ. Res. Lett. 14, 064016 (2019).

    Article 

    Google Scholar 

  • 64.

    Pendergrass, A. G. et al. Flash droughts present a new challenge for subseasonal-to-seasonal prediction. Nat. Clim. Change 10, 191–199 (2020).

    Article 

    Google Scholar 

  • 65.

    Hagenlocher, M. et al. Drought vulnerability and risk assessments: state of the art, persistent gaps, and research agenda. Environ. Res. Lett. 14, 083002 (2019).

    Article 

    Google Scholar 

  • 66.

    Jacobs-Crisioni, C. et al. The LUISA Territorial Reference Scenario 2017: A Technical Description (Publications Office of the European Union, 2017); https://ec.europa.eu/jrc/en/publication/luisa-territorial-reference-scenario-2017

  • 67.

    Capros, P. et al. GEM-E3 Model Documentation (Publications Office of the European Union, 2013); https://publications.jrc.ec.europa.eu/repository/handle/111111111/32366

  • 68.

    Keramidas, K., Kitous, A., Després, J. & Schmitz, A. POLES-JRC Model Documentation (Publications Office of the European Union, 2017); https://publications.jrc.ec.europa.eu/repository/handle/JRC113757

  • 69.

    Feyen, L. & Dankers, R. Impact of global warming on streamflow drought in Europe. J. Geophys. Res. Atmos. 114, D17116 (2009).

    Article 

    Google Scholar 

  • 70.

    Tallaksen, L. M. & Van Lanen, H. A. Hydrological Drought: Processes and Estimation Methods for Streamflow and Groundwater Vol. 48 (Elsevier, 2004).

  • 71.

    Lehner, B., Döll, P., Alcamo, J., Henrichs, T. & Kaspar, F. Estimating the impact of global change on flood and drought risks in Europe: a continental, integrated analysis. Climatic Change 75, 273–299 (2006).

    Article 

    Google Scholar 

  • 72.

    Roudier, P. et al. Projections of future floods and hydrological droughts in Europe under a +2 °C global warming. Climatic Change 135, 341–355 (2016).

    Article 

    Google Scholar 

  • 73.

    Knijff, J. M. V. D., Younis, J. & Roo, A. P. J. D. LISFLOOD: a GIS‐based distributed model for river basin scale water balance and flood simulation. Int. J. Geogr. Inf. Sci. 24, 189–212 (2010).

    Article 

    Google Scholar 

  • 74.

    Salamon, P. et al. EFAS Upgrade for the Extended Model Domain (Publications Office of the European Union, 2019); https://publications.jrc.ec.europa.eu/repository/handle/111111111/55587

  • 75.

    Jacob, D. et al. EURO-CORDEX: new high-resolution climate change projections for European impact research. Reg. Environ. Change 14, 563–578 (2014).

    Article 

    Google Scholar 

  • 76.

    Knutti, R. et al. Meeting Report. In IPCC Expert Meeting on Assessing and Combining Multi Model Climate Projections (eds Stocker, T. F. et al.) (IPCC, 2010).

  • 77.

    Shepherd, T. G. Storyline approach to the construction of regional climate change information. Proc. R. Soc. Lond. A 475, 20190013 (2019).

    Google Scholar 

  • 78.

    Mentaschi, L. et al. Independence of future changes of river runoff in Europe from the pathway to global warming. Climate 8, 22 (2020).

    Article 

    Google Scholar 

  • 79.

    Mentaschi, L. et al. The transformed-stationary approach: a generic and simplified methodology for non-stationary extreme value analysis. Hydrol. Earth Syst. Sci. 20, 3527–3547 (2016).

    Article 

    Google Scholar 

  • 80.

    Forzieri, G. et al. Resilience of Large Investments and Critical Infrastructures in Europe to Climate Change (Publications Office of the European Union, 2015); https://publications.jrc.ec.europa.eu/repository/handle/111111111/38894

  • 81.

    Batista e Silva, F. et al. HARCI-EU, a harmonized gridded dataset of critical infrastructures in Europe for large-scale risk assessments. Sci. Data 6, 126 (2019).

    Article 

    Google Scholar 

  • 82.

    Doornkamp, J. C. Clay shrinkage induced subsidence. Geogr. J. 159, 196–202 (1993).

    Article 

    Google Scholar 

  • 83.

    Boivin, P., Garnier, P. & Tessier, D. Relationship between clay content, clay type, and shrinkage properties of soil samples. Soil Sci. Soc. Am. J. 68, 1145–1153 (2004).

    CAS 
    Article 

    Google Scholar 

  • 84.

    Hiederer, R. Mapping Soil Properties for Europe—Spatial Representation of Soil Database Attributes (Publications Office of the European Union, 2013); https://publications.jrc.ec.europa.eu/repository/handle/111111111/29170

  • 85.

    Crilly, M. Analysis of a database of subsidence damage. Struct. Surv. 19, 7–15 (2001).

    Article 

    Google Scholar 

  • 86.

    Corti, T., Wüest, M., Bresch, D. & Seneviratne, S. I. Drought-induced building damages from simulations at regional scale. Nat. Hazards Earth Syst. Sci. 11, 3335–3342 (2011).

    Article 

    Google Scholar 

  • 87.

    Batista e Silva, F., Lavalle, C. & Koomen, E. A procedure to obtain a refined European land use/cover map. J. Land Use Sci. 8, 255–283 (2013).

    Article 

    Google Scholar 

  • 88.

    Florczyk, A. et al. GHSL Data Package 2019 (Publications Office of the European Union, 2019); https://publications.jrc.ec.europa.eu/repository/handle/111111111/56552

  • 89.

    Kron, W., Steuer, M., Löw, P. & Wirtz, A. How to deal properly with a natural catastrophe database—analysis of flood losses. Nat. Hazards Earth Syst. Sci. 12, 535–550 (2012).

  • 90.

    Felbermayr, G. & Gröschl, J. Naturally negative: the growth effects of natural disasters. J. Dev. Econ. 111, 92–106 (2014).

    Article 

    Google Scholar 


  • Source: Resources - nature.com

    Ekotrope makes building energy-efficient homes easier

    Using mechanics for cleaner membranes