in

Long-lasting, monovalent-selective capacitive deionization electrodes

[adace-ad id="91168"]
  • 1.

    Parsons, S. & Jefferson, B. Introduction to Potable Water Treatment Processes (Wiley, 2006).

  • 2.

    World Health Organization. Boron in Drinking-Water: Background Document for Development of WHO Guidelines for Drinking-Water Quality (World Health Organization, 2009).

  • 3.

    Zodrow, K. R. et al. Advanced materials, technologies, and complex systems analyses: emerging opportunities to enhance urban water security. Environ. Sci. Technol. 51, 10274–10281 (2017).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Suss, M. E. et al. Water desalination via capacitive deionization: what is it and what can we expect from it? Energy Environ. Sci. 8, 2296–2319 (2015).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Zhang, X., Zuo, K., Zhang, X., Zhang, C. & Liang, P. Selective ion separation by capacitive deionization (CDI) based technologies: a state-of-the-art review. Environ. Sci. Water Res. Technol. 6, 243–257 (2020).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Su, X. et al. Electrochemically-mediated selective capture of heavy metal chromium and arsenic oxyanions from water. Nat. Commun. 9, 4701 (2018).

    Article 
    CAS 

    Google Scholar 

  • 7.

    Swain, B. Recovery and recycling of lithium: a review. Sep. Purif. Technol. 172, 388–403 (2017).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Schaible, G. Understanding Irrigated Agriculture (United States Department of Agriculture, Economic Research Service, 2017).

  • 9.

    Ayers, R. S. & Westcot, D. W. Water Quality for Agriculture. Vol. 29 (Food and Agriculture Organization of the United Nations, 1985).

  • 10.

    Singh, R. B., Minhas, P. S., Chauhan, C. P. S. & Gupta, R. K. Effect of high salinity and SAR waters on salinization, sodication and yields of pearl-millet and wheat. Agric. Water Manag. 21, 93–105 (1992).

    Article 

    Google Scholar 

  • 11.

    Mau, Y. & Porporato, A. A dynamical system approach to soil salinity and sodicity. Adv. Water Resour. 83, 68–76 (2015).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Baker, R. W. Membrane Technology and Applications (Wiley, 2012).

  • 13.

    Epsztein, R., DuChanois, R. M., Ritt, C. L., Noy, A. & Elimelech, M. Towards single-species selectivity of membranes with subnanometre pores. Nat. Nanotechnol. 15, 426–436 (2020).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Nativ, P., Fridman-Bishop, N. & Gendel, Y. Ion transport and selectivity in thin film composite membranes in pressure-driven and electrochemical processes. J. Membr. Sci. 584, 46–55 (2019).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Wormser, E. M., Nir, O. & Edri, E. Low-resistance monovalent-selective cation exchange membranes prepared using molecular layer deposition for energy-efficient ion separations. RSC Adv. 11, 2427–2436 (2021).

  • 16.

    Luo, T., Abdu, S. & Wessling, M. Selectivity of ion exchange membranes: a review. J. Membr. Sci. 555, 429–454 (2018).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Cohen, B., Lazarovitch, N. & Gilron, J. Upgrading groundwater for irrigation using monovalent selective electrodialysis. Desalination 431, 126–139 (2018).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Ouyang, L., Malaisamy, R. & Bruening, M. L. Multilayer polyelectrolyte films as nanofiltration membranes for separating monovalent and divalent cations. J. Membr. Sci. 310, 76–84 (2008).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Nativ, P., Lahav, O. & Gendel, Y. Separation of divalent and monovalent ions using flow-electrode capacitive deionization with nanofiltration membranes. Desalination 425, 123–129 (2018).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Mohammad, A. W. et al. Nanofiltration membranes review: recent advances and future prospects. Desalination 356, 226–254 (2015).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Shi, W. et al. Efficient lithium extraction by membrane capacitive deionization incorporated with monovalent selective cation exchange membrane. Sep. Purif. Technol. 210, 885–890 (2019).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Choi, J., Dorji, P., Shon, H. K. & Hong, S. Applications of capacitive deionization: desalination, softening, selective removal, and energy efficiency. Desalination 449, 118–130 (2019).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Gamaethiralalage, J. G. et al. Recent advances in ion selectivity with capacitive deionization. Energy Environ. Sci. https://doi.org/10.1039/D0EE03145C (2021).

  • 24.

    Porada, S., Zhao, R., Van Der Wal, A., Presser, V. & Biesheuvel, P. M. Review on the science and technology of water desalination by capacitive deionization. Prog. Mater. Sci. 58, 1388–1442 (2013).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Hand, S., Guest, J. S. & Cusick, R. D. Technoeconomic analysis of brackish water capacitive deionization: navigating tradeoffs between performance, lifetime, and material costs. Environ. Sci. Technol. 53, 13353–13363 (2019).

    Article 
    CAS 

    Google Scholar 

  • 26.

    Gao, X., Omosebi, A., Landon, J. & Liu, K. Enhanced salt removal in an inverted capacitive deionization cell using amine modified microporous carbon cathodes. Environ. Sci. Technol. 49, 10920–10926 (2015).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Gao, X., Omosebi, A., Holubowitch, N., Landon, J. & Liu, K. Capacitive deionization using alternating polarization: effect of surface charge on salt removal. Electrochim. Acta 233, 249–255 (2017).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Kang, J. S. et al. Rapid inversion of surface charges in heteroatom-doped porous carbon: a route to robust electrochemical desalination. Adv. Funct. Mater. 30, 1909387 (2020).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Uwayid, R., Seraphim, N. M., Guyes, E. N., Eisenberg, D. & Suss, M. E. Characterizing and mitigating the degradation of oxidized cathodes during capacitive deionization cycling. Carbon 173, 1105–1114 (2021).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Cohen, I., Avraham, E., Bouhadana, Y., Soffer, A. & Aurbach, D. Long term stability of capacitive de-ionization processes for water desalination: the challenge of positive electrodes corrosion. Electrochim. Acta 106, 91–100 (2013).

    CAS 
    Article 

    Google Scholar 

  • 31.

    He, D., Wong, C. E., Tang, W., Kovalsky, P. & Waite, T. D. Faradaic reactions in water desalination by batch-mode capacitive deionization. Environ. Sci. Technol. Lett. 3, 222–226 (2016).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Srimuk, P., Su, X., Yoon, J., Aurbach, D. & Presser, V. Charge-transfer materials for electrochemical water desalination, ion separation and the recovery of elements. Nat. Rev. Mater. 5, 517–538 (2020).

    CAS 
    Article 

    Google Scholar 

  • 33.

    Su, X. et al. Asymmetric Faradaic systems for selective electrochemical separations. Energy Environ. Sci. 10, 1272–1283 (2017).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Singh, K., Porada, S., de Gier, H. D., Biesheuvel, P. M. & de Smet, L. C. P. M. Timeline on the application of intercalation materials in capacitive deionization. Desalination 455, 115–134 (2019).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Yu, F. et al. Faradaic reactions in capacitive deionization for desalination and ion separation. J. Mater. Chem. A 7, 15999–16027 (2019).

    CAS 
    Article 

    Google Scholar 

  • 36.

    Son, M. et al. Improving the thermodynamic energy efficiency of battery electrode deionization using flow-through electrodes. Environ. Sci. Technol. 54, 3628–3635 (2020).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Pothanamkandathil, V., Fortunato, J. & Gorski, C. A. Electrochemical desalination using intercalating electrode materials: a comparison of energy demands. Environ. Sci. Technol. 54, 3653–3662 (2020).

    CAS 
    Article 

    Google Scholar 

  • 38.

    Srimuk, P. et al. MXene as a novel intercalation-type pseudocapacitive cathode and anode for capacitive deionization. J. Mater. Chem. A 4, 18265–18271 (2016).

    CAS 
    Article 

    Google Scholar 

  • 39.

    Gabelich, C. J., Tran, T. D. & Suffet, I. H. M. Electrosorption of inorganic salts from aqueous solution using carbon aerogels. Environ. Sci. Technol. 36, 3010–3019 (2002).

    CAS 
    Article 

    Google Scholar 

  • 40.

    Zhao, R. et al. Time-dependent ion selectivity in capacitive charging of porous electrodes. J. Colloid Interface Sci. 384, 38–44 (2012).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Biesheuvel, P. M. & van Soestbergen, M. Counterion volume effects in mixed electrical double layers. J. Colloid Interface Sci. 316, 490–499 (2007).

    CAS 
    Article 

    Google Scholar 

  • 42.

    Suss, M. E. Size-based ion selectivity of micropore electric double layers in capacitive deionization electrodes. J. Electrochem. Soc. 164, E270–E275 (2017).

    CAS 
    Article 

    Google Scholar 

  • 43.

    Guyes, E. N., Malka, T. & Suss, M. E. Enhancing the ion-size-based selectivity of capacitive deionization electrodes. Environ. Sci. Technol. 53, 8447–8454 (2019).

    CAS 
    Article 

    Google Scholar 

  • 44.

    Hawks, S. A. et al. Using ultramicroporous carbon for the selective removal of nitrate with capacitive deionization. Environ. Sci. Technol. 53, 10863–10870 (2019).

    CAS 
    Article 

    Google Scholar 

  • 45.

    Zhan, C. et al. Specific ion effects at graphitic interfaces. Nat. Commun. 10, 4858 (2019).

    Article 
    CAS 

    Google Scholar 

  • 46.

    Wang, L. & Lin, S. Mechanism of selective ion removal in membrane capacitive deionization for water softening. Environ. Sci. Technol. 53, 5797–5804 (2019).

    CAS 
    Article 

    Google Scholar 

  • 47.

    Giera, B., Henson, N., Kober, E. M., Shell, M. S. & Squires, T. M. Electric double-layer structure in primitive model electrolytes: comparing molecular dynamics with local-density approximations. Langmuir 31, 3553–3562 (2015).

    CAS 
    Article 

    Google Scholar 

  • 48.

    Hou, C., Taboada-Serrano, P., Yiacoumi, S. & Tsouris, C. Electrosorption selectivity of ions from mixtures of electrolytes inside nanopores. J. Chem. Phys. 129, 224703 (2008).

    Article 
    CAS 

    Google Scholar 

  • 49.

    Seo, S.-J. et al. Investigation on removal of hardness ions by capacitive deionization (CDI) for water softening applications. Water Res. 44, 2267–2275 (2010).

    CAS 
    Article 

    Google Scholar 

  • 50.

    Gabitto, J. & Tsouris, C. Electrosorption driven ion separation. hal-01966598 (2018).

  • 51.

    Nordstrand, J. & Dutta, J. Predicting and enhancing the ion selectivity in multi-ion capacitive deionization. Langmuir 36, 8476–8484 (2020).

    CAS 
    Article 

    Google Scholar 

  • 52.

    Choi, J., Lee, H. & Hong, S. Capacitive deionization (CDI) integrated with monovalent cation selective membrane for producing divalent cation-rich solution. Desalination 400, 38–46 (2016).

    CAS 
    Article 

    Google Scholar 

  • 53.

    Avraham, E., Yaniv, B., Soffer, A. & Aurbach, D. Developing ion electroadsorption stereoselectivity, by pore size adjustment with chemical vapor deposition onto active carbon fiber electrodes. Case of Ca2+/Na+ Separation in water capacitive desalination. J. Phys. Chem. C 112, 7385–7389 (2008).

    CAS 
    Article 

    Google Scholar 

  • 54.

    Cerón, M. R. et al. Cation selectivity in capacitive deionization: elucidating the role of pore size, electrode potential, and ion dehydration. ACS Appl. Mater. Interfaces 12, 42644–42652 (2020).

    Article 
    CAS 

    Google Scholar 

  • 55.

    Oyarzun, D. I., Hemmatifar, A., Palko, J. W., Stadermann, M. & Santiago, J. G. Adsorption and capacitive regeneration of nitrate using inverted capacitive deionization with surfactant functionalized carbon electrodes. Sep. Purif. Technol. 194, 410–415 (2018).

    CAS 
    Article 

    Google Scholar 

  • 56.

    Dong, Q. et al. Selective removal of lead ions through capacitive deionization: role of ion-exchange membrane. Chem. Eng. J. 361, 1535–1542 (2019).

    CAS 
    Article 

    Google Scholar 

  • 57.

    Wu, T. et al. Asymmetric capacitive deionization utilizing nitric acid treated activated carbon fiber as the cathode. Electrochim. Acta 176, 426–433 (2015).

    CAS 
    Article 

    Google Scholar 

  • 58.

    Gao, X. et al. Complementary surface charge for enhanced capacitive deionization. Water Res. 92, 275–282 (2016).

    CAS 
    Article 

    Google Scholar 

  • 59.

    Yang, J., Zou, L. & Choudhury, N. R. Ion-selective carbon nanotube electrodes in capacitive deionisation. Electrochim. Acta 91, 11–19 (2013).

    CAS 
    Article 

    Google Scholar 

  • 60.

    Cohen, I., Avraham, E., Noked, M., Soffer, A. & Aurbach, D. Enhanced charge efficiency in capacitive deionization achieved by surface-treated electrodes and by means of a third electrode. J. Phys. Chem. C 115, 19856–19863 (2011).

    CAS 
    Article 

    Google Scholar 

  • 61.

    Gao, X., Omosebi, A., Landon, J. & Liu, K. Surface charge enhanced carbon electrodes for stable and efficient capacitive deionization using inverted adsorption-desorption behavior. Energy Environ. Sci. 8, 897–909 (2015).

    CAS 
    Article 

    Google Scholar 

  • 62.

    Hemmatifar, A. et al. Thermodynamics of ion separation by electrosorption. Environ. Sci. Technol. 52, 10196–10204 (2018).

    CAS 
    Article 

    Google Scholar 

  • 63.

    Hemmatifar, A. et al. Equilibria model for pH variations and ion adsorption in capacitive deionization electrodes. Water Res. 122, 387–397 (2017).

    CAS 
    Article 

    Google Scholar 

  • 64.

    Min, B. H., Choi, J.-H. & Jung, K. Y. Improved capacitive deionization of sulfonated carbon/titania hybrid electrode. Electrochim. Acta 270, 543–551 (2018).

    CAS 
    Article 

    Google Scholar 

  • 65.

    Qian, B. et al. Sulfonated graphene as cation-selective coating: a new strategy for high-performance membrane capacitive deionization. Adv. Mater. Interfaces 2, 1500372 (2015).

    Article 
    CAS 

    Google Scholar 

  • 66.

    Jia, B. & Zou, L. Wettability and its influence on graphene nansoheets as electrode material for capacitive deionization. Chem. Phys. Lett. 548, 23–28 (2012).

    CAS 
    Article 

    Google Scholar 

  • 67.

    Lee, J.-Y., Seo, S.-J., Yun, S.-H. & Moon, S.-H. Preparation of ion exchanger layered electrodes for advanced membrane capacitive deionization (MCDI). Water Res. 45, 5375–5380 (2011).

    CAS 
    Article 

    Google Scholar 

  • 68.

    Yan, T., Xu, B., Zhang, J., Shi, L. & Zhang, D. Ion-selective asymmetric carbon electrodes for enhanced capacitive deionization. RSC Adv. 8, 2490–2497 (2018).

    CAS 
    Article 

    Google Scholar 

  • 69.

    Park, H. R. et al. Surface-modified spherical activated carbon for high carbon loading and its desalting performance in flow-electrode capacitive deionization. RSC Adv. 6, 69720–69727 (2016).

    CAS 
    Article 

    Google Scholar 

  • 70.

    Shocron, A. N. & Suss, M. E. Should we pose a closure problem for capacitive charging of porous electrodes? Europhys. Lett. 130, 34003 (2020).

    CAS 
    Article 

    Google Scholar 

  • 71.

    Singh, K. et al. Nickel hexacyanoferrate electrodes for high mono/divalent ion-selectivity in capacitive deionization. Desalination 481, 114346 (2020).

    CAS 
    Article 

    Google Scholar 

  • 72.

    Oyarzun, D. I., Hemmatifar, A., Palko, J. W., Stadermann, M. & Santiago, J. G. Ion selectivity in capacitive deionization with functionalized electrode: theory and experimental validation. Water Res. X 1, 100008 (2018).

    Article 
    CAS 

    Google Scholar 

  • 73.

    Hawks, S. A. et al. Quantifying the flow efficiency in constant-current capacitive deionization. Water Res. 129, 327–336 (2018).

    CAS 
    Article 

    Google Scholar 

  • 74.

    Hawks, S. A. et al. Performance metrics for the objective assessment of capacitive deionization systems. Water Res. 152, 126–137 (2019).

    CAS 
    Article 

    Google Scholar 

  • 75.

    Kang, J. et al. Direct energy recovery system for membrane capacitive deionization. Desalination 398, 144–150 (2016).

    CAS 
    Article 

    Google Scholar 

  • 76.

    Długołecki, P. & Van Der Wal, A. Energy recovery in membrane capacitive deionization. Environ. Sci. Technol. 47, 4904–4910 (2013).

    Article 
    CAS 

    Google Scholar 

  • 77.

    Atlas, I., Abu Khalla, S. & Suss, M. E. Thermodynamic energy efficiency of electrochemical systems performing simultaneous water desalination and electricity generation. J. Electrochem. Soc. 167, 134517 (2020).

    CAS 
    Article 

    Google Scholar 

  • 78.

    Wang, L., Dykstra, J. E. & Lin, S. Energy efficiency of capacitive deionization. Environ. Sci. Technol. 53, 3366–3378 (2019).

    CAS 
    Article 

    Google Scholar 

  • 79.

    Biesheuvel, P. M. Thermodynamic cycle analysis for capacitive deionization. J. Colloid Interface Sci. 332, 258–264 (2009).

    CAS 
    Article 

    Google Scholar 

  • 80.

    Wang, L., Biesheuvel, P. M. & Lin, S. Reversible thermodynamic cycle analysis for capacitive deionization with modified Donnan model. J. Colloid Interface Sci. 512, 522–528 (2018).

    CAS 
    Article 

    Google Scholar 

  • 81.

    Qin, M. et al. Comparison of energy consumption in desalination by capacitive deionization and reverse osmosis. Desalination 455, 100–114 (2019).

    CAS 
    Article 

    Google Scholar 

  • 82.

    Hatzell, M. C. & Hatzell, K. B. Blue refrigeration: capacitive de-ionization for brackish water treatment. J. Electrochem. Energy Convers. Storage 15, 1–6 (2018).

    Article 
    CAS 

    Google Scholar 

  • 83.

    Hemmatifar, A., Palko, J. W., Stadermann, M. & Santiago, J. G. Energy breakdown in capacitive deionization. Water Res. 104, 303–311 (2016).

    CAS 
    Article 

    Google Scholar 

  • 84.

    Dykstra, J. E., Zhao, R., Biesheuvel, P. M. & Van der Wal, A. Resistance identification and rational process design in capacitive deionization. Water Res. 88, 358–370 (2016).

    CAS 
    Article 

    Google Scholar 

  • 85.

    Gao, X., Omosebi, A., Landon, J. & Liu, K. Dependence of the capacitive deionization performance on potential of zero charge shifting of carbon xerogel electrodes during long-term operation. J. Electrochem. Soc. 161, E159–E166 (2014).

    Article 

    Google Scholar 

  • 86.

    Gao, X., Omosebi, A., Landon, J. & Liu, K. Surface charge enhanced carbon electrodes for stable and efficient capacitive deionization using inverted adsorption–desorption behavior. Energy Environ. Sci. 8, 897–909 (2015).

    CAS 
    Article 

    Google Scholar 

  • 87.

    Gao, X., Omosebi, A., Landon, J. & Liu, K. Voltage-based stabilization of microporous carbon electrodes for inverted capacitive deionization. J. Phys. Chem. C 122, 1158–1168 (2018).

    CAS 
    Article 

    Google Scholar 

  • 88.

    Kim, M., Cerro, M., del, Hand, S. & Cusick, R. D. Enhancing capacitive deionization performance with charged structural polysaccharide electrode binders. Water Res. 148, 388–397 (2019).

    CAS 
    Article 

    Google Scholar 

  • 89.

    Krüner, B. et al. Hydrogen-treated, sub-micrometer carbon beads for fast capacitive deionization with high performance stability. Carbon 117, 46–54 (2017).

    Article 
    CAS 

    Google Scholar 

  • 90.

    Biesheuvel, P. M., Zhao, R., Porada, S. & van der Wal, A. Theory of membrane capacitive deionization including the effect of the electrode pore space. J. Colloid Interface Sci. 360, 239–248 (2011).

    CAS 
    Article 

    Google Scholar 

  • 91.

    Tang, W., Kovalsky, P., Cao, B. & Waite, T. D. Investigation of fluoride removal from low-salinity groundwater by single-pass constant-voltage capacitive deionization. Water Res. 99, 112–121 (2016).

    CAS 
    Article 

    Google Scholar 

  • 92.

    Boublík, T. Hard‐sphere equation of state. J. Chem. Phys. 53, 471–472 (1970).

    Article 

    Google Scholar 

  • 93.

    Mansoori, G. A. et al. Equilibrium thermodynamic properties of the mixture of hard spheres. J. Chem. Phys. 54, 1523–1525 (1971).

    CAS 
    Article 

    Google Scholar 

  • 94.

    Guyes, E. N., Shocron, A. N., Simanovski, A., Biesheuvel, P. M. & Suss, M. E. A one-dimensional model for water desalination by flow-through electrode capacitive deionization. Desalination 415, 8–13 (2017).

    CAS 
    Article 

    Google Scholar 

  • 95.

    Kim, C. et al. Influence of pore structure and cell voltage of activated carbon cloth as a versatile electrode material for capacitive deionization. Carbon 122, 329–335 (2017).

    CAS 
    Article 

    Google Scholar 

  • 96.

    Bi, S. et al. Permselective ion electrosorption of subnanometer pores at high molar strength enables capacitive deionization of saline water. Sustain. Energy Fuels 4, 1285–1295 (2020).

    CAS 
    Article 

    Google Scholar 

  • 97.

    Rivin, D., Aron, J. & Donoian, H. Sulfonated carbon black pigmented compositions. 3519452 (1970).

  • 98.

    Vanýsek, P. Equivalent conductivity of electrolytes in aqueous solution. In CRC Handbook of Chemistry and Physics 99th edn (ed. Rumble, J. R.) (CRC Press/Taylor & Francis, 2018).

  • 99.

    Vanýsek, P. Ionic conductivity and diffusion at infinite dilution. In CRC Handbook of Chemistry and Physics 99th edn (ed. Rumble, J. R.) (CRC Press/Taylor & Francis, 2018).


  • Source: Resources - nature.com

    Design could enable longer lasting, more powerful lithium batteries

    Cooling homes without warming the planet