in

Sustainable polyethylene fabrics with engineered moisture transport for passive cooling

[adace-ad id="91168"]
  • 1.

    The price of fast fashion. Nat. Clim. Change 8, 1 (2018).

  • 2.

    Shirvanimoghaddam, K., Motamed, B., Ramakrishna, S. & Naebe, M. Death by waste: fashion and textile circular economy case. Sci. Total Environ. 718, 137317 (2020).

    CAS  Article  Google Scholar 

  • 3.

    Boriskina, S. V. An ode to polyethylene. MRS Energy Sustain. 6, E14 (2019).

    Article  Google Scholar 

  • 4.

    Grigore, M. Methods of recycling, properties and applications of recycled thermoplastic polymers. Recycling 2, 24 (2017).

    Article  Google Scholar 

  • 5.

    Ragaert, K., Delva, L. & Van Geem, K. Mechanical and chemical recycling of solid plastic waste. Waste Manag. 69, 24–58 (2017).

    CAS  Article  Google Scholar 

  • 6.

    Zhang, Z. et al. Recovering waste plastics using shape-selective nano-scale reactors as catalysts. Nat. Sustain. 2, 39–42 (2019).

    Article  Google Scholar 

  • 7.

    Tong, J. K. et al. Infrared-transparent visible-opaque fabrics for wearable personal thermal management. ACS Photonics 2, 769–778 (2015).

    CAS  Article  Google Scholar 

  • 8.

    Hsu, P.-C. et al. Radiative human body cooling by nanoporous polyethylene textile. Science 353, 1019–1023 (2016).

    CAS  Article  Google Scholar 

  • 9.

    Boriskina, S. V. Nanoporous fabrics could keep you cool. Science 353, 986–987 (2016).

    CAS  Article  Google Scholar 

  • 10.

    Peng, Y. et al. Nanoporous polyethylene microfibres for large-scale radiative cooling fabric. Nat. Sustain. 1, 105–112 (2018).

    Article  Google Scholar 

  • 11.

    Boriskina, S. V., Zandavi, H., Song, B., Huang, Y. & Chen, G. Heat is the new light. Opt. Photonics News 28, 26–33 (2017).

    Article  Google Scholar 

  • 12.

    Higg Materials Sustainability Index (Higg Co., accessed 27 October 2020); https://msi.higg.org/

  • 13.

    Muthu, S. S., Li, Y., Hu, J. Y. & Mok, P. Y. Recyclability potential index (RPI): the concept and quantification of RPI for textile fibres. Ecol. Indic. 18, 58–62 (2012).

    CAS  Article  Google Scholar 

  • 14.

    Allwood, J. M., Laursen, S. E., Rodríguez, C. M. de & Bocken, N. M. P. Well Dressed? The Present and Future Sustainability of Clothing and Textiles in the United Kingdom (Cambridge Univ. Press, 2006).

  • 15.

    van der Velden, N. M., Kuusk, K. & Köhler, A. R. Life cycle assessment and eco-design of smart textiles: the importance of material selection demonstrated through e-textile product redesign. Mater. Des. 84, 313–324 (2015).

    Article  Google Scholar 

  • 16.

    Steinberger, J. K., Friot, D., Jolliet, O. & Erkman, S. A spatially explicit life cycle inventory of the global textile chain. Int. J. Life Cycle Assess. 14, 443–455 (2009).

    CAS  Article  Google Scholar 

  • 17.

    Shimel, M. et al. Enhancement of wetting and mechanical properties of UHMWPE-based composites through alumina atomic layer deposition. Adv. Mater. Interfaces 5, 14 (2018).

    Article  Google Scholar 

  • 18.

    Yousif, E. & Haddad, R. Photodegradation and photostabilization of polymers, especially polystyrene: review. SpringerPlus 2, 398 (2013).

    Article  Google Scholar 

  • 19.

    Hawkins, W. L. in Polymer Degradation and Stabilization (ed. Harwood, H. J.) 3–34 (Springer, 1984).

  • 20.

    Abusrafa, A. E., Habib, S., Krupa, I., Ouederni, M. & Popelka, A. Modification of polyethylene by RF plasma in different/mixture gases. Coatings 9, 145 (2019).

    Article  Google Scholar 

  • 21.

    Princen, H. M. Capillary phenomena in assemblies of parallel cylinders. II. Liquid columns between horizontal parallel cylinders. J. Colloid Interface Sci. 30, 359–371 (1969).

    Article  Google Scholar 

  • 22.

    Zhang, J. & Han, Y. Shape-gradient composite surfaces: water droplets move uphill. Langmuir 23, 6136–6141 (2007).

    CAS  Article  Google Scholar 

  • 23.

    Wallenberger, F. T. The effect of absorbed water on the properties of cotton and fibers from hydrophilic polyester block copolymers. Text. Res. J. 48, 577–581 (1978).

    CAS  Article  Google Scholar 

  • 24.

    Shamey, R. in Polyolefin Fibres: Structure, Properties and Industrial Applications (ed. Ugbolue, S. C. O.) 359–388 (Woodhead Publishing, 2017).

  • 25.

    Lozano, L. M. et al. Optical engineering of polymer materials and composites for simultaneous color and thermal management. Opt. Mater. Express 9, 1990–2005 (2019).

    Article  Google Scholar 

  • 26.

    Cai, L. et al. Temperature regulation in colored infrared-transparent polyethylene textiles. Joule 3, 1478–1486 (2019).

    CAS  Article  Google Scholar 

  • 27.

    Workman, J. J. Jr in Encyclopedia of Analytical Chemistry (eds Meyers, R. A. & Provder, T.) https://doi.org/10.1002/9780470027318.a2021 (John Wiley & Sons, Ltd, 2006).

  • 28.

    Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017).

    Article  Google Scholar 

  • 29.

    A New Textiles Economy: Redesigning Fashion’s Future (Ellen Macarthur Foundation, 2017); https://www.ellenmacarthurfoundation.org/publications/a-new-textiles-economy-redesigning-fashions-future

  • 30.

    Bisinella, V., Albizzati, P. F., Astrup, T. F. & Damgaard, A. Life Cycle Assessment of Grocery Carrier Bags (Danish Environmental Protection Agency, 2018); https://www.researchgate.net/publication/326735612_Life_Cycle_Assessment_of_grocery_carrier_bags

  • 31.

    Ni, G. W. et al. A salt-rejecting floating solar still for low-cost desalination. Energy Environ. Sci. 11, 1510–1519 (2018).

    CAS  Article  Google Scholar 

  • 32.

    Alberghini, M. et al. Multistage and passive cooling process driven by salinity difference. Sci. Adv. 6, eaax5015 (2020).

    CAS  Article  Google Scholar 

  • 33.

    Lal Basediya, A., Samuel, D. V. K. & Beera, V. Evaporative cooling system for storage of fruits and vegetables – a review. J. Food Sci. Technol. 50, 429–442 (2013).

    Article  Google Scholar 

  • 34.

    McLain, V. C. Final report on the safety assessment of polyethylene. Int. J. Toxicol. 26, 115–127 (2007).

    Google Scholar 

  • 35.

    Suhardi, V. J. et al. A fully functional drug-eluting joint implant. Nat. Biomed. Eng. 1, 0080 (2017).

  • 36.

    Halden, R. U. Plastics and health risks. Annu. Rev. Public Health 31, 179–194 (2010).

    Article  Google Scholar 

  • 37.

    Terinte, N., Manda, B. M. K., Taylor, J., Schuster, K. C. & Patel, M. K. Environmental assessment of coloured fabrics and opportunities for value creation: spin-dyeing versus conventional dyeing of modal fabrics. J. Clean. Prod. 72, 127–138 (2014).

    Article  Google Scholar 

  • 38.

    Bombgardner, M. Greener textile dyeing. C&EN Glob. Enterp. 96, 28–33 (2018).

  • 39.

    Carroll, B. J. Accurate measurement of contact angle, phase contact areas, drop volume, and Laplace excess pressure in drop-on-fibre systems. J. Colloid Interface Sci. 57, 488–495 (1976).

    CAS  Article  Google Scholar 

  • 40.

    Kralchevsky, P. A., Paunov, V. N., Ivanov, I. B. & Nagayama, K. Capillary meniscus interaction between colloidal particles attached to a liquid–fluid interface. J. Colloid Interface Sci. 151, 79–94 (1992).

    Article  Google Scholar 

  • 41.

    Masoodi, R. & Pillai, K. M. Wicking in Porous Materials: Traditional and Modern Modeling Approaches (CRC Press and Taylor & Francis, 2012).

  • 42.

    Princen, H. M. Capillary phenomena in assemblies of parallel cylinders. I. Capillary rise between two cylinders. J. Colloid Interface Sci. 30, 69–75 (1969).

  • 43.

    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).


  • Source: Resources - nature.com

    Genetic identity and genotype × genotype interactions between symbionts outweigh species level effects in an insect microbiome

    Study predicts the oceans will start emitting ozone-depleting CFCs