in

The importance of warm habitat to the growth regime of cold-water fishes

[adace-ad id="91168"]
  • 1.

    Isaak, D. J., Young, M. K., Nagel, D. E., Horan, D. L. & Groce, M. C. The cold-water climate shield: delineating refugia for preserving salmonid fishes through the 21st century. Glob. Change Biol. 21, 2540–2553 (2015).

    Google Scholar 

  • 2.

    Tabor, K. & Williams, J. W. Globally downscaled climate projections for assessing the conservation impacts of climate change. Ecol. Appl. 20, 554–565 (2010).

    Google Scholar 

  • 3.

    Small-Lorenz, S. L., Culp, L. A., Ryder, T. B., Will, T. C. & Marra, P. P. A blind spot in climate change vulnerability assessments. Nat. Clim. Change 3, 91–93 (2013).

    Google Scholar 

  • 4.

    Runge, C. A., Martin, T. G., Possingham, H. P., Willis, S. G. & Fuller, R. A. Conserving mobile species. Front. Ecol. Environ. 12, 395–402 (2014).

    Google Scholar 

  • 5.

    Sears, M. W., Raskin, E. & Angilletta, M. J. The world is not flat: defining relevant thermal landscapes in the context of climate change. Integr. Comp. Biol. 51, 666–675 (2011).

    Google Scholar 

  • 6.

    Ebersole, J. L., Liss, W. J. & Frissell, C. A. Thermal heterogeneity, stream channel morphology, and salmonid abundance in northeastern Oregon streams. Can. J. Fish. Aquat. Sci. https://doi.org/10.1139/f03-107 (2011).

  • 7.

    Baldock, J. R., Armstrong, J. B., Schindler, D. E. & Carter, J. L. Juvenile coho salmon track a seasonally shifting thermal mosaic across a river floodplain. Freshw. Biol. 61, 1454–1465 (2016).

    CAS 

    Google Scholar 

  • 8.

    Armstrong, J. B. & Schindler, D. E. Going with the flow: spatial distributions of juvenile coho salmon track an annually shifting mosaic of water temperature. Ecosystems 16, 1429–1441 (2013).

    CAS 

    Google Scholar 

  • 9.

    Wurtsbaugh, W. A. & Neverman, D. Post-feeding thermotaxis and daily vertical migration in a larval fish. Nature 333, 846–848 (1988).

    Google Scholar 

  • 10.

    Thompson, L. M., Staudinger, M. D. & Carter, S. L. Summarizing Components of US Department of the Interior Vulnerability Assessments to Focus Climate Adaptation Planning Open-File Report 2015–1110 (US Geological Survey, 2015).

  • 11.

    Bottrill, M. C. et al. Is conservation triage just smart decision making? Trends Ecol. Evol. 23, 649–654 (2008).

    Google Scholar 

  • 12.

    Pacifici, M. et al. Assessing species vulnerability to climate change. Nat. Clim. Change 5, 215–224 (2015).

    Google Scholar 

  • 13.

    Brady, M. E., Chione, A. M. & Armstrong, J. B. Missing pieces in the full annual cycle of fish ecology: a systematic review of the phenology of freshwater fish research. Preprint at bioRxiv https://doi.org/10.1101/2020.11.24.395665 (2020).

  • 14.

    Marra, P. P., Cohen, E. B., Loss, S. R., Rutter, J. E. & Tonra, C. M. A call for full annual cycle research in animal ecology. Biol. Lett. 11, 20150552 (2015).

    Google Scholar 

  • 15.

    Smeraldo, S. et al. Ignoring seasonal changes in the ecological niche of non-migratory species may lead to biases in potential distribution models: lessons from bats. Biodivers. Conserv. 27, 2425–2441 (2018).

    Google Scholar 

  • 16.

    Magnuson, J. J., Crowder, L. B. & Medvick, P. A. Temperature as an ecological resource. Integr. Comp. Biol. 19, 331–343 (1979).

    Google Scholar 

  • 17.

    Isaak, D. J., Wenger, S. J. & Young, M. K. Big biology meets microclimatology: defining thermal niches of ectotherms at landscape scales for conservation planning. Ecol. Appl. 27, 977–990 (2017).

    Google Scholar 

  • 18.

    Poole, G. C. et al. The case for regime-based water quality standards. BioScience 54, 155–161 (2004).

    Google Scholar 

  • 19.

    Pauly, S., Soriano-Bartz, M., Moreau, J. & Jarre-Teichmann, A. A new model accounting for seasonal cessation of growth in fishes. Mar. Freshw. Res. 43, 1151–1156 (1992).

    Google Scholar 

  • 20.

    Brett, J. R. Energetic responses of salmon to temperature. A study of some thermal relations in the physiology and freshwater ecology of sockeye salmon (Oncorhynchus nerkd). Integr. Comp. Biol. 11, 99–113 (1971).

    Google Scholar 

  • 21.

    Armstrong, J. B. & Schindler, D. E. Excess digestive capacity in predators reflects a life of feast and famine. Nature 476, 84–87 (2011).

    CAS 

    Google Scholar 

  • 22.

    Childress, E. S. & Letcher, B. H. Estimating thermal performance curves from repeated field observations. Ecology 98, 1377–1387 (2017).

    Google Scholar 

  • 23.

    Neuheimer, A. B., Thresher, R. E., Lyle, J. M. & Semmens, J. M. Tolerance limit for fish growth exceeded by warming waters. Nat. Clim. Change 1, 110–113 (2011).

    Google Scholar 

  • 24.

    Lusardi, R. A., Hammock, B. G., Jeffres, C. A., Dahlgren, R. A. & Kiernan, J. D. Oversummer growth and survival of juvenile coho salmon (Oncorhynchus kisutch) across a natural gradient of stream water temperature and prey availability: an in situ enclosure experiment. Can. J. Fish. Aquat. Sci. https://doi.org/10.1139/cjfas-2018-0484 (2019).

  • 25.

    Sunday, J. M. et al. Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proc. Natl Acad. Sci. USA 111, 5610–5615 (2014).

    CAS 

    Google Scholar 

  • 26.

    Tattam, I. A., Li, H. W., Giannico, G. R. & Ruzycki, J. R. Seasonal changes in spatial patterns of Oncorhynchus mykiss growth require year-round monitoring. Ecol. Freshw. Fish 26, 434–443 (2017).

    Google Scholar 

  • 27.

    Munch, S. B. & Conover, D. O. Accounting for local physiological adaptation in bioenergetic models: testing hypotheses for growth rate evolution by virtual transplant experiments. Can. J. Fish. Aquat. Sci. https://doi.org/10.1139/f02-013 (2011).

  • 28.

    Eliason, E. J. et al. Differences in thermal tolerance among sockeye salmon populations. Science 332, 109–112 (2011).

    CAS 

    Google Scholar 

  • 29.

    Forseth, T. et al. Thermal growth performance of juvenile brown trout Salmo trutta: no support for thermal adaptation hypotheses. J. Fish Biol. 74, 133–149 (2009).

    CAS 

    Google Scholar 

  • 30.

    Kaeding, L. R. & Kaya, C. M. Growth and diets of trout from contrasting environments in a geothermally heated stream: the Firehole River of Yellowstone National Park. Trans. Am. Fish. Soc. 107, 432–438 (1978).

    Google Scholar 

  • 31.

    Armstrong, J. B., Ward, E. J., Schindler, D. E. & Lisi, P. J. Adaptive capacity at the northern front: sockeye salmon behaviourally thermoregulate during novel exposure to warm temperatures. Conserv. Physiol. 4, cow039 (2016).

    Google Scholar 

  • 32.

    Petty, J. T., Thorne, D., Huntsman, B. M. & Mazik, P. M. The temperature–productivity squeeze: constraints on brook trout growth along an Appalachian river continuum. Hydrobiologia 727, 151–166 (2014).

    CAS 

    Google Scholar 

  • 33.

    Sommer, T. R., Harrell, W. C. & Nobriga, M. L. Habitat use and stranding risk of juvenile chinook salmon on a seasonal floodplain. North Am. J. Fish. Manag. 25, 1493–1504 (2005).

    Google Scholar 

  • 34.

    Hayes, S. A. et al. Steelhead growth in a small central California watershed: upstream and estuarine rearing patterns. Trans. Am. Fish. Soc. 137, 114–128 (2008).

    Google Scholar 

  • 35.

    Patrick, C. J. et al. Precipitation and temperature drive continental-scale patterns in stream invertebrate production. Sci. Adv. 5, eaav2348 (2019).

    CAS 

    Google Scholar 

  • 36.

    Mejia, F. H. et al. Stream metabolism increases with drainage area and peaks asynchronously across a stream network. Aquat. Sci. 81, 9 (2018).

    Google Scholar 

  • 37.

    Kaylor, M. J., White, S. M., Saunders, W. C. & Warren, D. R. Relating spatial patterns of stream metabolism to distributions of juveniles salmonids at the river network scale. Ecosphere 10, e02781 (2019).

    Google Scholar 

  • 38.

    McNyset, K. M., Volk, C. J. & Jordan, C. E. Developing an effective model for predicting spatially and temporally continuous stream temperatures from remotely sensed land surface temperatures. Water 7, 6827–6846 (2015).

    Google Scholar 

  • 39.

    Selong, J. H., McMahon, T. E., Zale, A. V. & Barrows, F. T. Effect of temperature on growth and survival of bull trout, with application of an improved method for determining thermal tolerance in fishes. Trans. Am. Fish. Soc. 130, 1026–1037 (2001).

    Google Scholar 

  • 40.

    Mesa, M. G., Weiland, L. K., Christiansen, H. E., Sauter, S. T. & Beauchamp, D. A. Development and evaluation of a bioenergetics model for bull trout. Trans. Am. Fish. Soc. 142, 41–49 (2013).

    CAS 

    Google Scholar 

  • 41.

    Muhlfeld, C. C. & Marotz, B. Seasonal movement and habitat use by subadult bull trout in the upper flathead river system, Montana. North Am. J. Fish. Manag. 25, 797–810 (2005).

    Google Scholar 

  • 42.

    Guzzo, M. M., Blanchfield, P. J. & Rennie, M. D. Behavioral responses to annual temperature variation alter the dominant energy pathway, growth, and condition of a cold-water predator. Proc. Natl Acad. Sci. USA 114, 9912–9917 (2017).

    CAS 

    Google Scholar 

  • 43.

    Downing, J. A. et al. Global abundance and size distribution of streams and rivers. Inland Waters 2, 229–236 (2012).

    Google Scholar 

  • 44.

    Tockner, K., Malard, F. & Ward, J. V. An extension of the flood pulse concept. Hydrol. Process. 14, 2861–2883 (2000).

    Google Scholar 

  • 45.

    Fullerton, A. H. et al. Hydrological connectivity for riverine fish: measurement challenges and research opportunities. Freshw. Biol. 55, 2215–2237 (2010).

    Google Scholar 

  • 46.

    Fullerton, A. H. et al. Simulated juvenile salmon growth and phenology respond to altered thermal regimes and stream network shape. Ecosphere 8, e02052 (2017).

    Google Scholar 

  • 47.

    Rand, P. S., Stewart, D. J., Seelbach, P. W., Jones, M. L. & Wedge, L. R. Modeling steelhead population energetics in Lakes Michigan and Ontario. Trans. Am. Fish. Soc. 122, 977–1001 (1993).

    Google Scholar 

  • 48.

    Steel, E. A., Sowder, C. & Peterson, E. E. Spatial and temporal variation of water temperature regimes on the Snoqualmie River network. J. Am. Water Resour. Assoc. 52, 769–787 (2016).

    Google Scholar 

  • 49.

    Armstrong, J. B. et al. Diel horizontal migration in streams: juvenile fish exploit spatial heterogeneity in thermal and trophic resources. Ecology 94, 2066–2075 (2013).

    Google Scholar 

  • 50.

    Brewitt, K. S., Danner, E. M. & Moore, J. W. Hot eats and cool creeks: juvenile Pacific salmonids use mainstem prey while in thermal refuges. Can. J. Fish. Aquat. Sci. https://doi.org/10.1139/cjfas-2016-0395 (2017).

  • 51.

    Pépino, M., Goyer, K. & Magnan, P. Heat transfer in fish: are short excursions between habitats a thermoregulatory behaviour to exploit resources in an unfavourable thermal environment? J. Exp. Biol. 218, 3461–3467 (2015).

    Google Scholar 

  • 52.

    Warren, D. R., Robinson, J. M., Josephson, D. C., Sheldon, D. R. & Kraft, C. E. Elevated summer temperatures delay spawning and reduce redd construction for resident brook trout (Salvelinus fontinalis). Glob. Change Biol. 18, 1804–1811 (2012).

    Google Scholar 

  • 53.

    Schlosser, I. J. Stream fish ecology: a landscape perspective. BioScience 41, 704–712 (1991).

    Google Scholar 

  • 54.

    Lucero, Y., Steel, E. A., Burnett, K. M. & Christiansen, K. Untangling human development and natural gradients: implications of underlying correlation structure for linking landscapes and riverine ecosystems. River Syst. 19, 207–224 (2011).

    Google Scholar 

  • 55.

    Muhlfeld, C. C. et al. Legacy introductions and climatic variation explain spatiotemporal patterns of invasive hybridization in a native trout. Glob. Change Biol. 23, 4663–4674 (2017).

    Google Scholar 

  • 56.

    Hitt, N. P., Snook, E. L. & Massie, D. L. Brook trout use of thermal refugia and foraging habitat influenced by brown trout. Can. J. Fish. Aquat. Sci. https://doi.org/10.1139/cjfas-2016-0255 (2016).

  • 57.

    Eaton, J. G. & Scheller, R. M. Effects of climate warming on fish thermal habitat in streams of the United States. Limnol. Oceanogr. 41, 1109–1115 (1996).

    Google Scholar 

  • 58.

    Rieman, B. E. et al. Anticipated climate warming effects on bull trout habitats and populations across the interior Columbia River basin. Trans. Am. Fish. Soc. 136, 1552–1565 (2007).

    Google Scholar 

  • 59.

    Starcevich, S. J., Howell, P. J., Jacobs, S. E. & Sankovich, P. M. Seasonal movement and distribution of fluvial adult bull trout in selected watersheds in the mid-Columbia River and Snake River basins. PLoS ONE 7, e37257 (2012).

    CAS 

    Google Scholar 

  • 60.

    Hanson, P. C., Johnson, T. B., Schindler, D. E., & Kitchell, J. F. Fish Bioenergetics 3.0 for Windows (ASC, 1997).

  • 61.

    Hawkins, B. L., Fullerton, A. H., Sanderson, B. L. & Steel, E. A. Individual-based simulations suggest mixed impacts of warmer temperatures and a nonnative predator on Chinook salmon. Ecosphere 11, e03218 (2020).

    Google Scholar 

  • 62.

    Crawford, S. S. & Muir, A. M. Global introductions of salmon and trout in the genus Oncorhynchus: 1870-2007. Rev. Fish Biol. Fisher 18, 313–344 (2008).

    Google Scholar 

  • 63.

    Beauchamp, D. A. et al. Bioenergetic responses by Pacific salmon to climate and ecosystem variation. N. Pac. Anadr. Fish Comm. Bull. 4, 257–269 (2007).

    Google Scholar 

  • 64.

    Independent Scientific Advisory Board Density Dependence and its Implications for Fish Management and Restoration Programs in the Columbia River Basin ISAB 2015-1 (Northwest Power and Conservation Council, 2015).

  • 65.

    Railsback, S. F. & Rose, K. A. Bioenergetics modeling of stream trout growth: temperature and food consumption effects. Trans. Am. Fish. Soc. 128, 241–256 (1999).

    Google Scholar 

  • 66.

    Van Winkle, W. et al. Individual-based model of sympatric populations of brown and rainbow trout for instream flow assessment: model description and calibration. Ecol. Model. 110, 175–207 (1998).

    Google Scholar 


  • Source: Resources - nature.com

    Old-growth forest carbon sinks overestimated

    MIT engineers make filters from tree branches to purify drinking water