in

A harmonized dataset of sediment diatoms from hundreds of lakes in the northeastern United States

[adace-ad id="91168"]
  • Smol, J. P. & Stoermer, E. F. The Diatoms: Application for the Environmental and Earth Sciences (Cambridge University Press, 2010).

  • Charles, D. F. Relationships between surface sediment diatom assemblages and lake water characteristics in Adirondack lakes. Ecology 66, 994–111 (1985).

    Article 

    Google Scholar 

  • Whitehead, D. R., Charles, D. F., Jackson, S. T., Reed S. E. & Sheehan, M. C. In Diatoms and Lake Acidity (eds J. P. Smol et al.) 251–274 (W. Junk, 1986).

  • Whitehead, D. R. et al. The developmental history of Adirondack (N.Y.) lakes. J. Paleolimnol. 2, 185–206 (1989).

    ADS 
    Article 

    Google Scholar 

  • Whitehead, D. R., Charles, D. F. & Goldstein, R. A. The PIRLA project (Paleoecological Investigation of Recent Lake Acidification): an introduction to the synthesis of the project. J. Paleolimnol. 3, 187–194 (1990).

    ADS 
    Article 

    Google Scholar 

  • Dixit, S. S. et al. Diatom assemblages from Adirondack lakes (New York, USA) and the development of inference models for retrospective environmental assessment. J. Paleolimnol. 8, 27–47 (1993).

    ADS 
    Article 

    Google Scholar 

  • Dixit, S. S. & Smol, J. P. Diatom evidence of past water quality changes in Adirondack seepage lakes (New York, USA). Diatom Res. 1, 113–129 (1995).

    Article 

    Google Scholar 

  • Allen, A. P. et al. Concordance of taxonomic composition patterns across multiple lake assemblages: effects of scale, body size, and land use. Can. J. Fish. Aquat. 56, 2029–2040 (1999).

    Article 

    Google Scholar 

  • Pither, J. & Aarssen, L. W. The evolutionary species pool hypothesis and patterns of freshwater diatom diversity along a pH gradient. J. Biogeogr. 32, 503–513 (2005).

    Article 

    Google Scholar 

  • Winegardner, A. K., Legendre, P., Beisner, B. E. & Gregory-Eaves, I. Diatom diversity patterns over the past c. 150 years across the conterminous United States of America: Identifying mechanisms behind beta diversity. Global Ecol. Biogeogr. 26, 1303–1315 (2017).

    Article 

    Google Scholar 

  • Dixit, S. S. & Smol, J. P. Diatoms as indicators in the Environmental Monitoring and Assessment Program-Surface Waters (EMAP-SW). Environ. Monit. Assess. 31, 275–37 (1994).

    PubMed 

    Google Scholar 

  • Dixit, S. S. et al. Assessing water quality changes in the lakes of the northeastern United States using sediment diatoms. Can. J. Fish. Aquatic Sci. 56, 131–152 (1999).

    Article 

    Google Scholar 

  • Stevenson, R. J., Zalack, J. & Wolin, J. A multimetric index of lake diatom condition using surface sediment assemblages. Freshw. Sci. 32, 1005–1025 (2013).

    Article 

    Google Scholar 

  • Liu, B. & Stevenson, R. J. Improving assessment accuracy for lake biological condition by classifying lakes with diatom typology, varying metrics and modeling multimetric indices. Sci. Total Environ. 609, 263–271 (2017).

    ADS 
    Article 

    Google Scholar 

  • Herlihy, A. T. et al. Using multiple approaches to develop nutrient criteria for lakes in the conterminous USA. Freshw. Sci. 32, 367–384 (2013).

    Article 

    Google Scholar 

  • Bachmann, R. W., Hoyer, M. V. & Canfield, D. E. The extent that natural lakes in the United States of America have been changed by cultural eutrophication. Limnol. Oceanogr. 58, 945–950 (2013).

    ADS 
    Article 

    Google Scholar 

  • McDonald, C. P. et al. Comment on Bachmann et al. (2013): A nonrepresentative sample cannot describe the extent of cultural eutrophication of natural lakes in the United States. Limnol. Oceanogr. 59, 2226–2230 (2014).

    ADS 
    Article 

    Google Scholar 

  • Smith, V. H. et al. Comment: Cultural eutrophication of natural lakes in the United States is real and widespread. Limnol. Oceanogr. 59, 2217–2225 (2014).

    ADS 
    Article 

    Google Scholar 

  • Bachmann, R. W., Hoyer, M. V. & Canfield, D. E. Response to comments: Quantification of the extent of cultural eutrophication of natural lakes in the United States. Limnol. Oceanogr. 59, 2231–2239 (2014).

    ADS 
    Article 

    Google Scholar 

  • Bachmann, R. W., Hoyer, M. V., Croteau, A. C. & Canfield, D. E. Factors related to Secchi depths and their stability over time as determined from a probability sample of US lakes. Environ. Monit. Assess. 189, 206 (2017).

    Article 

    Google Scholar 

  • Stager, J. C., Leavitt, P. R. & Dixit, S. S. Assessing impacts of past human activity on the water quality of Upper Saranac lake, New York. Lake Reserv. Manag. 13, 175–184 (1997).

    Article 

    Google Scholar 

  • Dixit, S. S., Dixit, A. S., Smol, J. P., Hughes, R. M. & Paulsen, S. G. Water Quality Changes from Human Activities in Three Northeastern USA Lakes. Lake Reserv. Manag. 16, 35–321 (2000).

    Article 

    Google Scholar 

  • Köster, D. et al. Paleolimnological assessment of human-induced impacts on Walden Pond (Massachusetts, USA) using diatoms and stable isotopes. Aquat. Ecosyst. Health 8, 117–131 (2005).

    Article 

    Google Scholar 

  • Enache, M. D., Charles, D. F., Belton, T. J. & Callinan, C. W. Total phosphorus changes in New York and New Jersey lakes (USA) inferred from sediment cores. Lake Reserv. Manag. 28, 293–310 (2012).

    Article 

    Google Scholar 

  • Rowell, H. C. et al. Quantitative paleolimnological inference models applied to a high-resolution biostratigraphic study of lake degradation and recovery, Onondaga Lake, New York (USA). J Paleolimnol. 55, 241–258 (2016).

    Article 

    Google Scholar 

  • Tyree, M. A., Bishop, I. W., Hawkins, C. P., Mitchell, R. & Spaulding, S. A. Reduction of taxonomic bias in diatom species data. Limnol. Oceanogr. Methods 18, 271–279 (2020).

    Article 

    Google Scholar 

  • Stribling, J. B., Pavlik, K. L., Holdsworth, S. M. & Leppo, E. W. Data quality, performance, and uncertainty in taxonomic identification for biological assessments. J. North Am. Benthol. Soc. 27, 906–919 (2008).

    Article 

    Google Scholar 

  • Thomson, S. A. et al. Towards a global list of accepted species II. Consequences of inadequate taxonomic list governance. Org. Divers. Evol. 21, 623–630 (2021).

    Article 

    Google Scholar 

  • Spaulding, S. A. et al. Diatoms of North America https://diatoms.org/ (2020).

  • Lee, S. S., Bishop, I. W., Spaulding, S. A., Mitchell, R. M. & Yuan, L. L. Taxonomic harmonization may reveal a stronger association between diatom assemblages and total phosphorus in large datasets. Ecol. Indic. 102, 166–174 (2019).

    Article 

    Google Scholar 

  • Cumming, B. F. et al. How Much Acidification Has Occurred in Adirondack Region Lakes (New York, USA) since Preindustrial Times? Can. J. Fish. Aquat. 49, 128–141 (1992).

    Article 

    Google Scholar 

  • Larsen, D. P., Stevens, D. L., Selle, A. R. & Paulsen, S. G. Environmental Monitoring and Assessment Program, EMAP-Surface Waters: A northeast lakes pilot. Lake Reserv. Manag. 7, 1–11 (1991).

    Article 

    Google Scholar 

  • Hughes, R. M., Paulsen, S. G. & Stoddard, J. L. EMAP-surface waters: A multiassemblage, probability survey of ecological integrity in the USA. Hydrobiologia 422, 429–443 (2000).

    Article 

    Google Scholar 

  • Larsen, D. P., Thornton, K. W., Urquhart, N. S. & Paulsen, S. G. The role of sample surveys for monitoring the condition of the nation’s lakes. Environ. Monit. Assess. 32, 101–34 (1994).

    Article 

    Google Scholar 

  • U.S. Environmental Protection Agency. Environmental Monitoring & Assessment Program. Northeast Lakes 1991-94 Data Sets. https://archive.epa.gov/emap/archive-emap/web/html/nelakes.html (2016).

  • U.S. Environmental Protection Agency. National Lakes Assessment: A Collaborative Survey of the Nation’s Lakes. Report No. EPA-841-R-09-001. (U.S. Environmental Protection Agency, 2009).

  • U.S. Environmental Protection Agency. 2012 National Lakes Assessment. Field Operations Manual. Report No. EPA 841-B-11-003. (U.S. Environmental Protection Agency, 2011)

  • Charles, D. F., Knowles, C. & Davis, R. S. Protocols for the Analysis of Algal Samples Collected as Part of the U.S. Geological Survey National Water-Quality Assessment Program. https://water.usgs.gov/nawqa/protocols/algprotocol/algprotocol.pdf Report (2002).

  • Krammer, K. Diatoms of Europe V. 1. (Gantner Verlag, 2000)

  • Lange-Bertalot, H. Diatoms of Europe V. 2. (Gantner Verlag, 2001)

  • Krammer, K. Diatoms of Europe V. 3. (Gantner Verlag, 2002)

  • Krammer, K. Diatoms of Europe V. 4. (Gantner Verlag, 2003)

  • Siver, P. A. & Hamilton, P. B. Iconographia Diatomologica V. 22. (Gantner Verlag, 2011).

  • Levkov, Z., Metzeltin, D. & Pavlov, A. Diatoms of Europe V. 7. (Gantner Verlag, 2013)

  • Levkov, Z., Mitić-Kopanja, D. & Reichardt, E. Diatoms of Europe V. 8. (Koeltz Botanical Books, 2016).

  • Lange-Bertalot, H., Hofmann, G., Werum, M. & Cantonati, M. Freshwater Benthic Diatoms of Central Europe (Koeltz Botanical Books, 2017).

  • Guiry, M. D. & Guiry, G. M. AlgaeBase https://www.algaebase.org (2021).

  • Kociolek, J. P. et al. DiatomBase http://www.diatombase.org (2021).

  • De Cáceres, M. Package ‘indicspecies’ https://cran.r-project.org/web/packages/indicspecies/indicspecies.pdf (2020).

  • Legendre, P. & Birks, H. J. B. In Tracking Environmental Change Using Lake Sediments. V. 5: Data Handling and Numerical Techniques (eds Birks H. J. B. et al.) 201–248 (Springer Dordrecht, 2012).

  • Legendre, P. & Gallagher, E. D. Ecologically meaningful transformations for ordination of species data. Oecologia 129, 271–280 (2001).

    ADS 
    Article 

    Google Scholar 

  • Oksanen, J. et al. Package ‘vegan’ https://cran.r-project.org/web/packages/vegan/vegan.pdf (2020).

  • Spaulding, S. A. Diatom Laboratory: Research Labs & Groups: INSTAAR: CU-Boulder https://instaar.colorado.edu/research/labs-groups/diatom-laboratory//research-detail (2021).

  • Conservation Gateway. Northeast Lake and Pond Classification System. http://www.conservationgateway.org/ConservationByGeography/NorthAmerica/UnitedStates/edc/reportsdata/freshwater/Pages/Northeast-Lakes.aspx (2021).

  • Soranno, P. & Cheruvelil, K. LAGOS-NE-LIMNO v1.087.3: A module for LAGOS-NE, a multi-scaled geospatial and temporal database of lake ecological context and water quality for thousands of U.S. Lakes: 1925–2013. Environmental Data Initiative https://doi.org/10.6073/pasta/08c6f9311929f4874b01bcc64eb3b2d7 (2019).

  • U.S. Geological Survey. National Hydrography Dataset (NHD). USGS Unnumbered Series. (U.S. Geological Survey, 2001).

  • Potapova, M. G., Lee, S. S., Spaulding, S. A. & Schulte, N. O. A harmonized dataset of sediment diatoms from hundreds of lakes in the northeastern United States. U.S. EPA Office of Research and Development (ORD) https://doi.org/10.23719/1524246 (2022).

  • U.S. Environmental Protection Agency. National Aquatic Resource Surveys. National Lakes Assessment 2007 (data and metadata files) https://www.epa.gov/national-aquatic-resource-surveys/data-national-aquatic-resource-surveys (2010).

  • U.S. Environmental Protection Agency. National Aquatic Resource Surveys. National Lakes Assessment 2017 (data and metadata files). http://www.epa.gov/national-aquatic-resource-surveys/data-national-aquatic-resource-surveys (2021).


  • Source: Ecology - nature.com

    Revisiting implementation of multiple natural enemies in pest management

    The impact of protozoa addition on the survivability of Bacillus inoculants and soil microbiome dynamics