in

Changes in trophic structure of an exploited fish community at the centennial scale are linked to fisheries and climate forces

[adace-ad id="91168"]
  • Kroodsma, D. A. et al. Tracking the global footprint of fisheries. Science 359, 904–908 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Luong, A. D., Dewulf, J. & De Laender, F. Quantifying the primary biotic resource use by fisheries: A global assessment. Sci. Total Environ. 719, 137352 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Pauly, D. How the global fish market contributes to human micronutrient deficiencies. Nature 574, 41–42 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • FAO. The State of World Fisheries and Aquaculture 2020 (FAO, 2020). https://doi.org/10.4060/ca9229en.

    Book 

    Google Scholar 

  • Shin, Y.-J., Rochet, M.-J., Jennings, S., Field, J. G. & Gislason, H. Using size-based indicators to evaluate the ecosystem effects of fishing. ICES J. Mar. Sci. 62, 384–396 (2005).

    Google Scholar 

  • Perry, A. L. Climate change and distribution shifts in marine fishes. Science 308, 1912–1915 (2005).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Novaglio, C., Smith, A. D. M., Frusher, S. & Ferretti, F. Identifying historical baseline at the onset of exploitation to improve understanding of fishing impacts. Aquat. Conserv. Mar. Freshwat. Ecosyst. 30, 475–485 (2020).

    Google Scholar 

  • Nagelkerken, I. & Connell, S. D. Global alteration of ocean ecosystem functioning due to increasing human CO2 emissions. Proc. Natl. Acad. Sci. 112, 13272–13277 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nagelkerken, I., Goldenberg, S. U., Ferreira, C. M., Ullah, H. & Connell, S. D. Trophic pyramids reorganize when food web architecture fails to adjust to ocean change. Science 832, 829–832 (2020).

    ADS 

    Google Scholar 

  • Lemoine, N. P. & Burkepile, D. E. Temperature-induced mismatches between consumption and metabolism reduce consumer fitness. Ecology 93, 2483–2489 (2012).

    PubMed 

    Google Scholar 

  • Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Moore, J. K. et al. Sustained climate warming drives declining marine biological productivity. Science 359, 1139–1143 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Ullah, H., Nagelkerken, I., Goldenberg, S. U. & Fordham, D. A. Climate change could drive marine food web collapse through altered trophic flows and cyanobacterial proliferation. PLoS Biol. 16, e2003446 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wing, S. R., Durante, L. M., Connolly, A. J., Sabadel, A. J. M. & Wing, L. C. Overexploitation and decline in kelp forests inflate the bioenergetic costs of fisheries. Glob. Ecol. Biogeogr. https://doi.org/10.1111/geb.13448 (2021).

    Article 

    Google Scholar 

  • Maureaud, A. et al. Global change in the trophic functioning of marine food webs. PLoS One 12, e0182826 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Pauly, D. Anecdotes and the shifting baseline syndrome of fisheries. Trends Ecol. Evol. 10, 430 (1995).

    CAS 
    PubMed 

    Google Scholar 

  • Chown, S. L. Marine food webs destabilized. Science 369, 770–771 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Saporiti, F. et al. Longer and less overlapping food webs in anthropogenically disturbed marine ecosystems: Confirmations from the past. PLoS One 9, 1–13 (2014).

    Google Scholar 

  • Gilby, B. L. et al. Human actions alter tidal marsh seascapes and the provision of ecosystem services. Estuaries Coasts https://doi.org/10.1007/s12237-020-00830-0 (2020).

    Article 

    Google Scholar 

  • Halpern, B. S. et al. Recent pace of change in human impact on the world’s ocean. Sci. Rep. 9, 11609 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Durante, L. M., Beentjes, M. P. & Wing, S. R. Shifting trophic architecture of marine fisheries in New Zealand: Implications for guiding effective ecosystem-based management. Fish Fish. 21, 813–830 (2020).

    Google Scholar 

  • Shears, N. T. & Bowen, M. M. Half a century of coastal temperature records reveal complex warming trends in western boundary currents. Sci. Rep. 7, 1–9 (2017).

    CAS 

    Google Scholar 

  • Wing, S. R. & Wing, E. Prehistoric fisheries in the Caribbean. Coral Reefs 20, 1–8 (2001).

    Google Scholar 

  • Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Irwin, G. & Walrond, C. ‘When was New Zealand first settled?—Extinction and decline’. Te Ara—the Encyclopedia of New Zealand 8 (2016). http://www.teara.govt.nz/en/when-was-new-zealand-first-settled/page-7. Accessed 4 June 2019.

  • Johnson, D. & Haworth, J. Hooked—The Sory of New Zealand Fishing Industry (Hazard Press, 2004).

    Google Scholar 

  • Urlich, S. C. & Handley, S. J. From ‘clean and green’ to ‘brown and down’: A synthesis of historical changes to biodiversity and marine ecosystems in the Marlborough Sounds, New Zealand. Ocean Coast. Manage. 198, 105349 (2020).

    Google Scholar 

  • Ramos, R. & González-Solís, J. Trace me if you can: The use of intrinsic biogeochemical markers in marine top predators. Front. Ecol. Environ. 10, 258–266 (2012).

    Google Scholar 

  • Graham, D. H. Food of fishes of Otago Harbour and Adjacent Sea. R. Soc. N. Z. 20, 421–436 (1939).

    Google Scholar 

  • Hanchet, S. Diet of spiny dogfish, Squalus acanthias Linnaeus, on the east coast, South Island, New Zealand. J. Fish Biol. 39, 313–323 (1991).

    Google Scholar 

  • Connell, A., Dunn, M. & Forman, J. Diet and dietary variation of New Zealand hoki Macruronus novaezelandiae. NZ J. Mar. Freshw. Res. 44, 289–308 (2010).

    Google Scholar 

  • Forman, J. & Dunn, M. The influence of ontogeny and environment on the diet of lookdown dory, Cyttus traversi. NZ J. Mar. Freshw. Res. 44, 329–342 (2010).

    Google Scholar 

  • Horn, P. L., Forman, J. S. & Dunn, M. R. Dietary partitioning by two sympatric fish species, red cod (Pseudophycis bachus) and sea perch ( Helicolenus percoides), on Chatham Rise, New Zealand. Mar. Biol. Res. 8, 624–634 (2012).

    Google Scholar 

  • Fisheries New Zealand. Fisheries Assessment Plenary, May 2020: Stock Assessments and Stock Status (2020).

  • Ladds, M., Pinkerton, M. H., Jones, E., Durante, L. & Dunn, M. Relationship between morphometrics and trophic levels in deep-sea fishes. Mar. Ecol. Prog. Ser. 637, 225–235 (2020).

    ADS 

    Google Scholar 

  • Durante, L. M. et al. Oceanographic transport along frontal zones forms carbon, nitrogen, and oxygen isoscapes on the east coast of New Zealand : Implications for ecological studies. Cont. Shelf Res. 216, 1–15 (2021).

    Google Scholar 

  • Funes, M., Irigoyen, A. J., Trobbiani, G. A. & Galván, D. E. Stable isotopes reveal different dependencies on benthic and pelagic pathways between Munida gregaria ecotypes. Food Webs 17, 1–9 (2018).

    Google Scholar 

  • Zeldis, J. R. & Jillett, J. B. Aggregation of pelagic Munida gregaria (Fabricius) (Decapoda, Anomura) by coastal fronts and internal waves. J. Plankton Res. 4, 839–857 (1982).

    Google Scholar 

  • Durante, L. M., Beentjes, M. P. & Wing, S. R. Decadal changes in exploited fish communities and their relationship with temperature, fisheries exploitation, and ecological traits in New Zealand waters. NZ J. Mar. Freshw. Res. 10, 1–27 (2021).

    Google Scholar 

  • Prugh, L. R. et al. The rise of the mesopredator. Bioscience 59, 779–791 (2009).

    Google Scholar 

  • Chiswell, S. M. & Sutton, P. J. H. Relationships between long-term ocean warming, marine heat waves and primary production in the New Zealand region. NZ J. Mar. Freshw. Res. https://doi.org/10.1080/00288330.2020.1713181 (2020).

    Article 

    Google Scholar 

  • Thomsen, M. S. et al. Local extinction of bull kelp (Durvillaea spp.) due to a marine heatwave. Front. Mar. Sci. 6, 1–10 (2019).

    Google Scholar 

  • Pinkerton, M. H. et al. Changes to the food-web of the Hauraki Gulf during the period of human occupation: A mass-balance model approach. New Zealand Aquatic Environment and Biodiversity Report No. 160. (2015).

  • Garrison, L. Fishing effects on spatial distribution and trophic guild structure of the fish community in the Georges Bank region. ICES J. Mar. Sci. 57, 723–730 (2000).

    Google Scholar 

  • Link, J. S. & Garrison, L. P. Changes in piscivory associated with fishing induced changes to the finfish community on Georges Bank. Fish. Res. 55, 71–86 (2002).

    Google Scholar 

  • Wainright, S. C., Fogarty, M. J., Greenfield, R. C. & Fry, B. Long-term changes in the Georges Bank food web: Trends in stable isotopic compositions of fish scales. Mar. Biol. 115, 481–493 (1993).

    Google Scholar 

  • Udy, J. A. et al. Regional differences in supply of organic matter from kelp forests drive trophodynamics of temperate reef fish. Mar. Ecol. Prog. Ser. 621, 19–32 (2019).

    ADS 

    Google Scholar 

  • Koenigs, C., Miller, R. & Page, H. Top predators rely on carbon derived from giant kelp Macrocystis pyrifera. Mar. Ecol. Prog. Ser. 537, 1–8 (2015).

    ADS 
    CAS 

    Google Scholar 

  • Clark, M. R., Anderson, O. F., Chris Francis, R. I. C. & Tracey, D. M. The effects of commercial exploitation on orange roughy (Hoplostethus atlanticus) from the continental slope of the Chatham Rise, New Zealand, from 1979 to 1997. Fish. Res. 45, 217–238 (2000).

    Google Scholar 

  • Fenaughty, J. M. & Bagley, N. M. WJ Scott New Zealand Trawling Survey—South Island East Coast. Technical Report 157. (1981).

  • Brodeur, R. & Pearcy, W. Effects of environmental variability on trophic interactions and food web structure in a pelagic upwelling ecosystem. Mar. Ecol. Prog. Ser. 84, 101–119 (1992).

    ADS 

    Google Scholar 

  • Tam, J., Purca, S., Duarte, L. O., Blaskovic, V. & Espinoza, P. Changes in the diet of hake associated with El Niño 1997–1998 in the northern Humboldt Current ecosystem. Adv. Geosci. 6, 63–67 (2006).

    Google Scholar 

  • Murphy, R. J., Pinkerton, M. H., Richardson, K. M., Bradford-Grieve, J. M. & Boyd, P. W. Phytoplankton distributions around New Zealand derived from SeaWiFS remotely-sensed ocean colour data. NZ J. Mar. Freshw. Res. 35, 343–362 (2001).

    Google Scholar 

  • Zeldis, J. Ecology of Munida gregaria (Decapoda, Anomura) distribution and abundance, population dynamics and fisheries. Mar. Ecol. Prog. Ser. 22, 77–99 (1985).

    ADS 

    Google Scholar 

  • Williams, B. G. The effect of the environment on the morphology of Munida Gregaria (Fabricius) (Decapoda, Anomura). Crustaceana 24, 197–210 (1973).

    Google Scholar 

  • Myers, R. A., Baum, J. K., Shepherd, T. D., Powers, S. P. & Peterson, C. H. Cascading effects of the loss of apex predatory sharks from a coastal ocean. Science 315, 1846–1850 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Udy, J. A. et al. Organic matter derived from kelp supports a large proportion of biomass in temperate rocky reef fish communities: Implications for ecosystem-based management. Aquat. Conserv. Mar. Freshw. Ecosyst. 29, 1503–1519 (2019).

    Google Scholar 

  • Jackson, J. B. C. Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629–637 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Kirby, R. R., Beaugrand, G. & Lindley, J. A. Synergistic effects of climate and fishing in a marine ecosystem. Ecosystems 12, 548–561 (2009).

    Google Scholar 

  • MacGibbon, D. J., Beentjes, M. P., Lyon, W. L. & Ladroit, Y. Inshore trawl survey of Canterbury Bight and Pegasus Bay, April–June 2018 (KAH1803). New Zealand Fisheries Assessment Report 2019/03. (2019).

  • Stevens, W. D., O’Driscoll, R. L., Ballara, S. L. & Schimel, A. C. G. Trawl survey of hoki and middle-depth species on the Chatham Rise, January 2018 (TAN1801). New Zealand Fisheries Assessment Report 2018/41. (2018).

  • Durante, L. M., Sabadel, A. J. M., Frew, R. D., Ingram, T. & Wing, S. R. Effects of fixatives on stable isotopes of fish muscle tissue: Implications for trophic studies on preserved specimens. Ecol. Appl. 30, 1–16 (2020).

    Google Scholar 

  • Post, D. M. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology 83, 703–718 (2002).

    Google Scholar 

  • Post, D. M. et al. Getting to the fat of the matter: Models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152, 179–189 (2007).

    ADS 
    PubMed 

    Google Scholar 

  • Verburg, P. The need to correct for the Suess effect in the application of δ13C in sediment of autotrophic Lake Tanganyika, as a productivity proxy in the Anthropocene. J. Paleolimnol. 37, 591–602 (2007).

    ADS 

    Google Scholar 

  • Keeling, C. D. The Suess effect: 13Carbon-14Carbon interrelations. Environ. Int. 2, 229–300 (1979).

    CAS 

    Google Scholar 

  • Sabadel, A., Durante, L. & Wing, S. Stable isotopes of amino acids from reef fishes uncover Suess and nitrogen enrichment effects on local ecosystems. Mar. Ecol. Prog. Ser. 647, 149–160 (2020).

    ADS 
    CAS 

    Google Scholar 

  • Eide, M., Olsen, A., Ninnemann, U. S. & Eldevik, T. A global estimate of the full oceanic 13C Suess effect since the preindustrial. Glob. Biogeochem. Cycles 31, 492–514 (2017).

    ADS 
    CAS 

    Google Scholar 

  • McMahon, K. W. & McCarthy, M. D. Embracing variability in amino acid δ15N fractionation: Mechanisms, implications, and applications for trophic ecology. Ecosphere 7, 1–26 (2016).

    Google Scholar 

  • Chikaraishi, Y. et al. Determination of aquatic food-web structure based on compound-specific nitrogen isotopic composition of amino acids. Limnol. Oceanogr. Methods 7, 740–750 (2009).

    CAS 

    Google Scholar 

  • Whiteman, J. P., Smith, E. A. E., Besser, A. C. & Newsome, S. D. A guide to using compound-specific stable isotope analysis to study the fates of molecules in organisms and ecosystems. Diversity 11, 1–18 (2019).

    Google Scholar 

  • Hilton, G. M. et al. A stable isotopic investigation into the causes of decline in a sub-Antarctic predator, the rockhopper penguin. Glob. Change Biol. 12, 611–625 (2006).

    ADS 

    Google Scholar 

  • Lorrain, A. et al. Nitrogen and carbon isotope values of individual amino acids: A tool to study foraging ecology of penguins in the Southern Ocean. Mar. Ecol. Prog. Ser. 391, 293–306 (2009).

    ADS 
    CAS 

    Google Scholar 

  • Quillfeldt, P. & Masello, J. F. Compound-specific stable isotope analyses in Falkland Islands seabirds reveal seasonal changes in trophic positions. BMC Ecol. 20, 1–12 (2020).

    Google Scholar 

  • Sabadel, A. J. M., Woodward, E. M. S., Van Hale, R. & Frew, R. D. Compound-specific isotope analysis of amino acids: A tool to unravel complex symbiotic trophic relationships. Food Webs 6, 9–18 (2016).

    Google Scholar 

  • Styring, A. K. et al. Practical considerations in the determination of compound-specific amino acid δ15N values in animal and plant tissues by gas chromatography-combustion-isotope ratio mass spectrometry, following derivatisation to their N-acetylisopropyl e. Rapid Commun. Mass Spectrom. 26, 2328–2334 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Coplen, T. B. Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Commun. Mass Spectrom. 25, 2538–2560 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Phillips, D. L. & Gregg, J. W. J. W. Uncertainty in source partitioning using stable isotopes. Oecologia 127, 171–179 (2001).

    ADS 
    PubMed 

    Google Scholar 

  • Jack, L. & Wing, S. R. Individual variability in trophic position and diet of a marine omnivore is linked to kelp bed habitat. Mar. Ecol. Prog. Ser. 443, 129–139 (2011).

    ADS 
    CAS 

    Google Scholar 

  • McCutchan, J. H., Lewis, W. M., Kendall, C. & McGrath, C. C. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102, 378–390 (2003).

    CAS 

    Google Scholar 

  • Hussey, N. E. et al. Rescaling the trophic structure of marine food webs. Ecol. Lett. 17, 239–250 (2014).

    PubMed 

    Google Scholar 

  • McMahon, K. W., Thorrold, S. R., Elsdon, T. S. & Mccarthy, M. D. Trophic discrimination of nitrogen stable isotopes in amino acids varies with diet quality in a marine fish. Limnol. Oceanogr. 60, 1076–1087 (2015).

    ADS 
    CAS 

    Google Scholar 

  • Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER—Stable Isotope Bayesian Ellipses in R. J. Anim. Ecol. 80, 595–602 (2011).

    PubMed 

    Google Scholar 

  • Layman, C. A., Arrington, D. A., Montaña, C. G. & Post, D. M. Can stable isotope ratios provide for community-wide measures of trophic structure?. Ecology 88, 42–48 (2007).

    PubMed 

    Google Scholar 

  • Wold, S., Sjöström, M. & Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst. 58, 109–130 (2001).

    CAS 

    Google Scholar 

  • Anderson, M., Gorley, R. N. & Clarke, K. R. PERMANOVA + for PRIMER: Guide to Software and Statistical Methods. 1, 1:218 (2008).

  • Mullan, A. Influence of Southern Oscillation on New Zealand Weather. In Proceedings of Western Pacific International Meeting and Workshop on TOGA-COARE (1996).

  • Francis, M. P., Hurst, R. J., McArdle, B. H., Bagley, N. W. & Anderson, O. F. New Zealand demersal fish assemblages. Environ. Biol. Fishes 65, 215–234 (2002).

    Google Scholar 

  • Beentjes, M. P., Bull, B., Hurst, R. J. & Bagley, N. W. Demersal fish assemblages along the continental shelf and upper slope of the east coast of the South Island, New Zealand. NZ J. Mar. Freshw. Res. 36, 197–223 (2002).

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical Computing. (2020).

  • SAS Institute. JMP. (2018).

  • Clarke, K. R. & Gorley, R. N. PRIMER v6: User Manual/Tutorial. (PRIMER-E, 2006).


  • Source: Ecology - nature.com

    How to clean solar panels without water

    Intra- and inter-spatial variability of meiofauna in hadal trenches is linked to microbial activity and food availability