in

Characterization of triatomine bloodmeal sources using direct Sanger sequencing and amplicon deep sequencing methods

[adace-ad id="91168"]
  • Blosser, E. M. et al. Environmental drivers of seasonal patterns of host utilization by Culiseta melanura (Diptera: Culicidae) in Florida. J. Med. Entomol. 54, 1365–1374 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Burkett-Cadena, N. D., Hassan, H. K., Eubanks, M. D., Cupp, E. W. & Unnasch, T. R. Winter severity predicts the timing of host shifts in the mosquito Culex erraticus. Biol. Lett. 8, 567–569 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gürtler, R. E., Cecere, M. C., Vazquez, D. P., Chuit, R. & Cohen, J. E. Host-feeding patterns of domiciliary Triatoma infestans (Hemiptera: Reduviidae) in northwest Argentina: Seasonal and instar variation. J. Med. Entomol. 33, 15–26 (1996).

    PubMed 

    Google Scholar 

  • Rabinovich, J. E. et al. Ecological patterns of blood-feeding by kissing-bugs (Hemiptera: Reduviidae: Triatominae). Mem. Inst. Oswaldo Cruz 106, 479–494 (2011).

    PubMed 

    Google Scholar 

  • Kent, R. J. Molecular methods for arthropod bloodmeal identification and applications to ecological and vector-borne disease studies. Mol. Ecol. Resour. 9, 4–18 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Cecere, M. C. et al. Host-feeding sources and infection with Trypanosoma cruzi of Triatoma infestans and Triatoma eratyrusiformis (Hemiptera: Reduviidae) from the Calchaqui Valleys in Northwestern Argentina. J. Med. Entomol. 53, 666–673 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Logue, K. et al. Unbiased characterization of Anopheles mosquito blood meals by targeted high-throughput sequencing. PLoS Negl. Trop. Dis. 10, e0004512 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Keller, J. I., Schmidt, J. O., Schmoker, A. M., Ballif, B. A. & Stevens, L. Protein mass spectrometry extends temporal blood meal detection over polymerase chain reaction in mouse-fed Chagas disease vectors. Mem. Inst. Oswaldo Cruz 113, e180160 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Borland, E. M. & Kading, R. C. Modernizing the toolkit for arthropod bloodmeal identification. Insects 12, 1–27 (2021).

    Google Scholar 

  • Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J. & Sayers, E. W. GenBank. Nucleic Acids Res. 44, D67–D72 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Hamer, S. A. et al. Comparison of DNA and carbon and nitrogen stable isotope-based techniques for identification of prior vertebrate hosts of ticks. J. Med. Entomol. 52, 1043–1049 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Scott, M. C., Harmon, J. R., Tsao, J. I., Jones, C. J. & Hickling, G. J. Reverse line blot probe design and polymerase chain reaction optimization for bloodmeal analysis of ticks from the eastern United States. J. Med. Entomol. 49, 697–709 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Arias-Giraldo, L. M. et al. Identification of blood-feeding sources in Panstrongylus, Psammolestes, Rhodnius and Triatoma using amplicon-based next-generation sequencing. Parasit. Vectors 13, 1–14 (2020).

    Google Scholar 

  • Kieran, T. J. et al. Blood meal source characterization using Illumina sequencing in the Chagas Disease vector Rhodnius pallescens (Hemiptera: Reduviidae) in Panamá. J. Med. Entomol. https://doi.org/10.1093/jme/tjx170 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Dumonteil, E. et al. Detailed ecological associations of triatomines revealed by metabarcoding and next-generation sequencing: Implications for triatomine behavior and Trypanosoma cruzi transmission cycles. Sci. Rep. 8, 1–13 (2018).

    CAS 

    Google Scholar 

  • Estrada-Franco, J. G. et al. Vertebrate-Aedes aegypti and Culex quinquefasciatus (Diptera)-arbovirus transmission networks: Non-human feeding revealed by meta-barcoding and nextgeneration sequencing. PLoS Negl. Trop. Dis. 14, 1–22 (2020).

    Google Scholar 

  • Campana, M. G. et al. Simultaneous identification of host, ectoparasite and pathogen DNA via in-solution capture. Mol. Ecol. Resour. 16, 1224–1239 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Klotz, S. A. et al. Free-roaming kissing bugs, vectors of Chagas disease, feed often on humans in the Southwest. Am. J. Med. 127, 421–426 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Waleckx, E., Suarez, J., Richards, B. & Dorn, P. L. Triatoma sanguisuga blood meals and potential for Chagas Disease, Louisiana, USA. Emerg. Infect. Dis. 20, 2141–2143 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kjos, S. A. et al. Identification of bloodmeal sources and Trypanosoma cruzi infection in triatomine bugs (Hemiptera: Reduviidae) from residential settings in Texas, the United States. J. Med. Entomol. 50, 1126–1139 (2013).

    PubMed 

    Google Scholar 

  • Gürtler, R. E., Cohen, J. E., Cecere, M. C. & Chuit, R. Shifting host choices of the vector of Chagas Disease, Triatoma Infestans, in relation to the availability of host in houses in North-West Argentina. J. Appl. Ecol. 34, 699–715 (1997).

    Google Scholar 

  • Minuzzi-Souza, T. et al. Molecular bloodmeal analyses reveal that Trypanosoma cruzi-infected, native triatomine bugs often feed on humans in houses in central Brazil. Med. Vet. Entomol. 32, 504–508 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Lent, H. & Wygodzinsky, P. W. Revision of the Triatominae (Hemiptera, Reduviidae), and their significance as vectors of Chagas’ Disease. Bull. Am. Museum Nat. Hist. 163, 123–520 (1979).

    Google Scholar 

  • World Health Organization. Chagas disease in Latin America: An epidemiological update based on 2010 estimates. Wkly. Epidemiol. Rec. 6, 33–44 (2015).

    Google Scholar 

  • Dorn, P. L. et al. Autochthonous transmission of Trypanosoma cruzi, Louisiana. Emerg. Infect. Dis. 13, 13–15 (2007).

    Google Scholar 

  • Cantey, P. T. et al. The United States Trypanosoma cruzi infection study: Evidence for vector-borne transmission of the parasite that causes Chagas disease among United States blood donors. Transfusion 52, 1922–1930 (2012).

    PubMed 

    Google Scholar 

  • Garcia, M. N. et al. Molecular identification and genotyping of Trypanosoma cruzi DNA in autochthonous Chagas disease patients from Texas, USA. Infect. Genet. Evol. 49, 151–156 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Barr, S., Gossett, K. A. & Klei, T. R. Clinical, clinicopathologic, and parasitologic observations of trypanosomiasis in dogs infected with North American Trypanosoma cruzi isolates. Am. J. Vet. Res. 52, 954–960 (1991).

    CAS 
    PubMed 

    Google Scholar 

  • Meyers, A. C., Meinders, M. & Hamer, S. A. Widespread Trypanosoma cruzi infection in government working dogs along the Texas-Mexico border: Discordant serology, parasite genotyping and associated vectors. PLoS Negl. Trop. Dis. 11, 1–19 (2017).

    Google Scholar 

  • Meyers, A. C., Edwards, E. E., Sanders, J. P., Saunders, A. B. & Hamer, S. A. Fatal Chagas myocarditis in government working dogs in the southern United States: Cross-reactivity and differential diagnoses in five cases across six months. Vet. Parasitol. Reg. Stud. Rep. 24, 1–7 (2021).

    Google Scholar 

  • Hodo, C. L. & Hamer, S. A. Toward an ecological framework for assessing reservoirs of vector-borne pathogens: Wildlife reservoirs of Trypanosoma cruzi across the southern United States. ILAR J. 58, 379–392 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guarneri, A. A., Pereira, M. H. & Diotaiuti, L. Influence of the blood meal source on the development of Triatoma infestans, Triatoma brasiliensis, Triatoma sordida, and Triatoma pseudomaculata (Heteroptera, Reduviidae). J. Med. Entomol. 37, 373–379 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Pippin, W. F. The biology and vector capability of Triatoma sanguisuga texana Usinger and Triatoma gerstaeckeri (Stål) compared with Rhodnius prolixus (Stål) (Hemiptera: Triatominae). J. Med. Entomol. 7, 30–45 (1970).

    CAS 
    PubMed 

    Google Scholar 

  • Bern, C., Kjos, S., Yabsley, M. J. & Montgomery, S. P. Trypanosoma cruzi and Chagas’ disease in the United States. Clin. Microbiol. Rev. 24, 655–681 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kjos, S. et al. Distribution and characterization of canine Chagas disease in Texas. Vet. Parasitol. 152, 249–256 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Tenney, T. D., Curtis-Robles, R., Snowden, K. F. & Hamer, S. A. Shelter dogs as sentinels for Trypanosoma cruzi transmission across Texas. Emerg. Infect. Dis. 20, 1323–1326 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Curtis-Robles, R., Wozniak, E. J., Auckland, L. D., Hamer, G. L. & Hamer, S. A. Combining public health education and disease ecology research: Using citizen science to assess Chagas disease entomological risk in Texas. PLoS Negl. Trop. Dis. 9, e0004235 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Curtis-Robles, R., Hamer, S. A., Lane, S., Levy, M. Z. & Hamer, G. L. Bionomics and spatial distribution of triatomine vectors of Trypanosoma cruzi in Texas and other southern states, USA. Am. J. Trop. Med. Hyg. 98, 113–121 (2018).

    PubMed 

    Google Scholar 

  • Curtis-Robles, R., Aukland, L. D., Snowden, K. F., Hamer, G. L. & Hamer, S. A. Analysis of over 1500 triatomine vectors from across the US, predominantly Texas, for Trypanosoma cruzi infection and discrete typing units. Infect. Genet. Evol. 58, 171–180 (2018).

    PubMed 

    Google Scholar 

  • Hodo, C. L., Wilkerson, G. K., Birkner, E. C., Gray, S. B. & Hamer, S. A. Trypanosoma cruzi transmission among captive nonhuman primates, wildlife, and vectors. EcoHealth 15, 426–436 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Duffy, T. et al. Analytical performance of a multiplex Real-Time PCR assay using TaqMan probes for quantification of Trypanosoma cruzi satellite DNA in blood samples. PLoS Negl. Trop. Dis. 7, e2000 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Piron, M. et al. Development of a real-time PCR assay for Trypanosoma cruzi detection in blood samples. Acta Trop. 103, 195–200 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Curtis-Robles, R. et al. Parasitic interactions among Trypanosoma cruzi, triatomine vectors, domestic animals, and wildlife in Big Bend National Park along the Texas-Mexico border. Acta Trop. 188, 225–233 (2018).

    PubMed 

    Google Scholar 

  • Cupp, E. W. et al. Identification of reptilian and amphibian blood meals from mosquitoes in an eastern equine encephalomyelitis virus focus in central Alabama. Am. J. Trop. Med. Hyg. 71, 272–276 (2004).

    PubMed 

    Google Scholar 

  • Medeiros, M. C. I., Ricklefs, R. E., Brawn, J. D. & Hamer, G. L. Plasmodium prevalence across avian host species is positively associated with exposure to mosquito vectors. Parasitology 142, 1612–1620 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Hamer, G. L. et al. Host selection by Culex pipiens mosquitoes and West Nile virus amplification. Am. J. Trop. Med. Hyg. 80, 268–278 (2009).

    PubMed 

    Google Scholar 

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    CAS 
    PubMed 

    Google Scholar 

  • Hathaway, N. J., Parobek, C. M., Juliano, J. J. & Bailey, J. A. SeekDeep: Single-base resolution de novo clustering for amplicon deep sequencing. Nucleic Acids Res. 46, e21 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Zeledón, R. et al. An Appraisal of the Status of Chagas Disease in the United States (Elsevier Inc., Amsterdam, 2012).

    Google Scholar 

  • Gorchakov, R. et al. Trypanosoma cruzi infection prevalence and bloodmeal analysis in triatomine vectors of Chagas disease from rural peridomestic locations in Texas, 2013–2014. J. Med. Entomol. 53, 911–918 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Stevens, L. et al. Vector blood meals and Chagas Disease transmission potential, United States. Emerg. Infect. Dis. 18, 646–650 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Polonio, R., López-Domínguez, J., Herrera, C. & Dumonteil, E. Molecular ecology of Triatoma dimidiata in southern Belize reveals risk for human infection and the local differentiation of Trypanosoma cruzi parasites. Int. J. Infect. Dis. 108, 320–329 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Sasaki, H., Rosales, R. & Tabaru, Y. Host feeding profiles of Rhodnius prolixus and Triatoma dimidiata in Guatemala (Hemiptera: Reduviidae: Triatominae). Med. Entomol. Zool. 54, 283–289 (2003).

    Google Scholar 

  • Villalobos, G., Martínez-Hernández, F., de la Torre, P., Laclette, J. P. & Espinoza, B. Entomological indices, feeding sources, and molecular identification of Triatoma phyllosoma (Hemiptera: Reduviidae) one of the main vectors of Chagas disease in the Istmo de Tehuantepec, Oaxaca, Mexico. Am. J. Trop. Med. Hyg. 85, 490–497 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Mota, J. et al. Identification of blood meal source and infection with Trypanosoma cruzi of Chagas disease vectors using a multiplex cytochrome b polymerase chain reaction assay. Vector Borne Zoonotic Dis. 7, 617–627 (2007).

    PubMed 

    Google Scholar 

  • Pizarro, J. C. & Stevens, L. A new method for forensic DNA analysis of the blood meal in Chagas disease vectors demonstrated using Triatoma infestans from Chuquisaca, Bolivia. PLoS ONE 3, e3585 (2008).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Abad-Franch, F. & Gurgel-Gonçalves, R. The ecology and natural history of wild triatominae in the Americas. In Triatominae—The Biology of Chagas Disease Vectors (eds Guarneri, A. & Lorenzo, M.) 387–445 (Springer Nature Switzerland AG, 2021). https://doi.org/10.1007/978-3-030-64548-9_16.

    Chapter 

    Google Scholar 

  • Busselman, R. E. & Hamer, S. A. Chagas disease ecology in the United States: Recent advances in understanding Trypanosoma cruzi transmission among triatomines, wildlife, and domestic animals and a quantitative synthesis of vector-host interactions. Annu. Rev. Anim. Biosci. 10, 325–348 (2022).

    PubMed 

    Google Scholar 

  • Minuzzi-Souza, T. T. C. et al. Vector-borne transmission of Trypanosoma cruzi among captive Neotropical primates in a Brazilian zoo. Parasit. Vectors 9, 1–7. https://doi.org/10.1186/s13071-016-1334-7 (2016).

    CAS 
    Article 

    Google Scholar 

  • Reis, F. C. et al. Trypanosomatid infections in captive wild mammals and potential vectors at the Brasilia Zoo, Federal District, Brazil. Vet. Med. Sci. 6, 248–256. https://doi.org/10.1002/vms3.216 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Martínez-Hernández, F., Oria-Martínez, B., Rendón-Franco, E., Villalobos, G. & Muñoz-García, C. I. Trypanosoma cruzi, beyond the dogma of non-infection in birds. Infect. Genet. Evol. https://doi.org/10.1016/j.meegid.2022.105239 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Botto-Mahan, C. et al. Lizards as silent hosts of Trypanosoma cruzi. Emerg. Infect. Dis. 28, 1250–1253. https://doi.org/10.3201/eid2806.220079 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Population dynamics of synanthropic rodents after a chemical and infrastructural intervention in an urban low-income community

    Gridded maps of wetlands dynamics over mid-low latitudes for 1980–2020 based on TOPMODEL