in

Comparative screening the life-time composition and crystallinity variation in gilthead seabream otoliths Sparus aurata from different marine environments

[adace-ad id="91168"]
  • Elsdon, T. S. et al. Otolith chemistry to describe movements and life-history parameters of fishes: Hypotheses, assumptions, limitations and inferences. Oceanogr. Mar. Biol. An Ann. Rev. 46, 297–330 (2008).

    Google Scholar 

  • Franco, A., Elliott, M., Franzoi, P. & Torricelli, P. Life strategies of fishes in European estuaries: The functional guild approach. Mar. Ecol. Prog. Ser. 354, 219–228 (2008).

    ADS 
    Article 

    Google Scholar 

  • Campana, S. E. Chemistry and composition of fish otoliths: Pathways, mechanisms and applications. Mar. Ecol. Prog. Ser. 188, 263–297 (1999).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Campana, S. E. & Thorrold, S. R. Otoliths, increments, and elements: Keys to a comprehensive understanding of fish populations?. Can. J. Fish. Aquat. Sci. 58, 30–38 (2001).

    Article 

    Google Scholar 

  • Campana, S. E. Calcium deposition and otolith check formation during periods of stress in Coho Salmon, Oncorhynchus Kisutch. Comp. Biochem. Physiol. 75A, 215–220 (1983).

    CAS 
    Article 

    Google Scholar 

  • Gauldie, R. W. Vaterite otoliths from chinook salmon (Oncorhynchus tshawytscha). N. Z. J. Mar. Fish. Res. 20, 209–217 (1986).

    CAS 
    Article 

    Google Scholar 

  • Casselman, J. M. & Gunn, J. M. Dynamics in year-class strength, growth, and calcified-structure size of native lake trout (Salvelinus namaycush) exposed to moderate acidification and whole-lake neutralization. Can. J. Fish. Aquat. Sci. 49, 102–111 (1992).

    CAS 
    Article 

    Google Scholar 

  • Tomás, J. & Geffen, A. J. Morphometry and composition of aragonite and vaterite otoliths of deformed laboratory reared juvenile herring from two populations. J. Fish Biol. 63, 1383–1401 (2003).

    Article 

    Google Scholar 

  • Brown, R. & Severin, K. P. Elemental distribution within polymorphic inconnu (Stenodus leucichthys) otoliths is affected by crystal structure. Can. J. Fish. Aquat. Sci. 56, 1898–1903 (1999).

    CAS 
    Article 

    Google Scholar 

  • Melancon, S., Fryer, B. J., Gagnon, J. E., Ludsin, S. A. & Yang, Z. Effects of crystal structure on the uptake of metals by lake trout (Salvelinus namaycush) otoliths. Can. J. Fish. Aquat. Sci. 62, 2609–2619 (2005).

    CAS 
    Article 

    Google Scholar 

  • Tzeng, W. N. et al. Misidentification of the migratory history of anguillid eels by Sr/Ca ratios of vaterite otoliths. Mar. Ecol. Prog. Ser. 348, 285–295 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Jolivet, A., Bardeau, J.-F., Fablet, R., Paulet, Y. M. & de Pontual, H. Understanding otolith biomineralization processes: new insights into microscale spatial distribution of organic and mineral fractions from Raman micro-spectrometry. Anal. Bioanal. Chem. 392, 551–560 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Barnes, T. C. & Gillanders, B. M. Combined effects of extrinsic and intrinsic factors on otolith chemistry: implications for environmental reconstructions. Can. J. Fish. Aquat. Sci. 70, 1159–1166 (2013).

    CAS 
    Article 

    Google Scholar 

  • Javor, B. & Dorval, E. Stability of trace elements in otoliths of juvenile Pacific sardine Sardinops sagax. Calif. Coop. Oceanic Fish. Invest. Rep. 57, 109–123 (2016).

    Google Scholar 

  • Hobbs, J. A., Yin, Q., Burton, J. & Bennett, W. A. Retrospective determination of natal habitats for an estuarine fish with otolith strontium isotope ratios. Mar. Fresh. Res. 56, 655–660 (2005).

    CAS 
    Article 

    Google Scholar 

  • Nehrke, G., Poigner, H., Wilhelms-Dick, D., Brey, T. & Abele, D. Coexistence of three cal-30 cium carbonate polymorphs in the shell of the Antarctic clam Laternula elliptica. Geochem. Geophys. Geosyst. 13, Q05014 (2012).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Montagna, P., McCulloch, M., Mazzoli, C., Silenzi, S. & Odorico, R. The non-tropical coral Cladocora caespitosa as the new climate archive for the Mediterranean: High-resolution ( weekly) trace element systematics. Quat. Sci. Rev. 26, 441–462 (2007).

    ADS 
    Article 

    Google Scholar 

  • Sadekov, A. et al. Surface and subsurface seawater temperature reconstruction using Mg/Ca microanalysis of planktonic foraminifera Globigerinoides ruber, Globigerinoides sacculifer, and Pulleniatina obliquiloculata. Paleoce. Paleoclim. 24, 3201 (2009).

    ADS 

    Google Scholar 

  • Fowler, A. M., Smith, S. M., Booth, D. J. & Stewart, J. Partial migration of grey mullet (Mugil cephalus) on Australia’s east coast revealed by otolith chemistry. Mar. Environ. Res. 119, 238–244 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gillanders, B. M. Using elemental chemistry of fish otoliths to determine connectivity between estuarine and coastal habitats. Estuar. Coast. Shelf. Sci. 64, 47–57 (2005).

    ADS 
    Article 

    Google Scholar 

  • Secor, D. H. & Rooker, J. R. Is otolith strontium a useful scalar of life-cycles in estuarine fishes?. Fish. Res. 46, 359–371 (2000).

    Article 

    Google Scholar 

  • Tabouret, H. et al. Otolith microchemistry in Sicydium punctatum: Indices of environmental condition changes after recruitment. Aquat. Liv. Res. 24, 369–378 (2011).

    Article 

    Google Scholar 

  • Neves, V., Guedes, A., Valentim, B., Campos, J. & Freitas, V. High incidence of otolith abnormality in juvenile European flounder Platichthys flesus from a tidal freshwater area. Mar. Biol. Res. 13(9), 933–941 (2017).

    Article 

    Google Scholar 

  • Coll-Lladó, C., Giebichenstein, J., Webb, P. B., Bridges, C. R. & de la Serrana, D. G. Ocean acidification promotes otolith growth and calcite deposition in gilthead sea bream (Sparus aurata) larvae. Sci. Rep. 8, 8384 (2018).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Kern, Z. et al. Fusiform vateritic inclusions observed in European eel (Anguilla anguilla L.) sagittae. Acta Biol. Hungar. 68, 267–278 (2017).

    CAS 
    Article 

    Google Scholar 

  • Behrens, G., Kuhn, L. T., Ubic, R. & Heuer, A. H. Raman spectra of vateritic calcium carbonate. Spectrosc. Lett. 28, 983–995 (1995).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Lazar, G. et al. Tracking the growing rings in biogenic aragonite from fish otolith using confocal Raman microspectroscopy and imaging. Stud. UBB Chem. 65(1), 125–136 (2020).

    CAS 
    Article 

    Google Scholar 

  • Farrugio, H., Le Corre, G. & Vaudo, G. Population dynamics of sea bass, sea-bream and sole exploited by the French multigears demersal fishery in the Gulf of Lions (Northwestern Mediterranean). In Study for Assessment and Management of Fisheries in the Western Mediterranean EEC-FAR programme report MA (eds Farrugio, H. & Lleonart, J.) 3–621 (EEC-IFREMER, 1994).

    Google Scholar 

  • Šegvić-Bubić, T. et al. Population genetic structure of reared and wild gilthead sea bream (Sparus aurata) in the Adriatic Sea inferred with microsatellite loci. Aquaculture 318, 309–315 (2011).

    Article 
    CAS 

    Google Scholar 

  • Šegvić-Bubić, T., Talijančić, I., Grubišić, L., Izquierdo-Gomez, D. & Katavić, I. Morphological and molecular differentiation of wild and farmed gilthead sea bream Sparus aurata: Implications for management. Aquac. Environ. Interact. 6, 43–54 (2014).

    Article 

    Google Scholar 

  • Šegvić-Bubić, T. et al. Site fidelity of farmed gilthead seabream Sparus aurata escapees in a coastal environment of the Adriatic Sea. Aquac. Environ. Interact. 10, 21–34 (2018).

    Article 

    Google Scholar 

  • Somarakis, S., Pavlidis, M., Saapoglou, C., Tsigenopoulos, C. S. & Dempster, T. Evidence for ‘escape through spawning’ in large gilthead seabream Sparus aurata reared in commercial sea-cages. Aquac. Environ. Interact. 3, 135–152 (2013).

    Article 

    Google Scholar 

  • Glamuzina, B. Neretva river fishery: History and perspectives. In Proceedings of Ribe I ribarstvo rijeke Neretve: Stanje i perspektive (eds Glamuzina, B. & Dulčić, J.) 20–30 (Sveučilište u Dubrovniku i Dubrovačko-Neretvanska Županija, 2010).

    Google Scholar 

  • Glamuzina, B. et al. Observations on the increase of wild gilthead seabream, Sparus aurata abundance, in the eastern Adriatic Sea: Problems and opportunities. Int. Aquat. Res. 6, 127–134 (2014).

    Article 

    Google Scholar 

  • Žužul, I. et al. Spatial connectivity pattern of expanding gilthead seabream populations and its interactions with aquaculture sites: a combined population genetic and physical modelling approach. Sci. Rep. 9, 1–14 (2019).

    Article 
    CAS 

    Google Scholar 

  • Cowen, R. K., Lwiza, K. M. M., Sponaugle, S., Paris, C. B. & Olson, D. B. Connectivity of marine populations: Open or closed?. Science 287, 857–857 (2000).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Cowen, R. K. & Sponaugle, S. Larval dispersal and marine population connectivity. Ann. Rev. Mar. Sci. 1, 443–466 (2009).

    PubMed 
    Article 

    Google Scholar 

  • Mercier, L., Mouillot, D., Bruguier, O., Vigliola, L. & Darnaude, A. M. Multi-element otolith fingerprints unravel sea-lagoon lifetime migrations of gilthead sea bream Sparus aurata. Mar. Ecol. Prog. Ser. 444, 175–194 (2012).

    ADS 
    Article 

    Google Scholar 

  • Isnard, E. et al. Getting a good start in life? A comparative analysis of the quality of lagoons as juvenile habitats for the gilthead seabream Sparus aurata in the gulf of Lions. Estuaries Coasts 38, 1937–1950 (2015).

    CAS 
    Article 

    Google Scholar 

  • Morais, P. et al. Response of Gilthead Seabream (Sparus aurata L., 1758) Larvae to Nursery Odor Cues as Described by a New Set of Behavioral Indexes. Front. Mar. Sci. 4, 318 (2017).

    Article 

    Google Scholar 

  • Audouin, J. La daurade de l’étang de Thau Chrysophrys Aurata (LINNÉ) (1962)

  • Lasserre, P. Osmoregulatory responses to estuarine conditions: chronic osmotic stress and competition. In Estuarine Processes (ed. Wiley, M.) 395–413 (Academic Press, 1976).

    Chapter 

    Google Scholar 

  • Bauchot, M. L. & Hureau, J. C. In Fishes of the North-Eastern Atlantic and the Mediterranean. II (eds Whitehead, P. J. et al.) 883–907 (UNESCO, 1986).

    Google Scholar 

  • Loeppky, A. R. et al. Influence of ontogenetic development, temperature, and pCO2 on otolith calcium carbonate polymorph composition in sturgeons. Sci. Rep. 11, 13878 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Barnett-Johnson, R., Ramos, F. C., Grimes, C. B. & MacFarlane, R. B. Validation of Sr isotopes in otoliths by laser ablation multicollector inductively coupled plasma mass spectrometry (LA-MC-ICPMS): Opening avenues in fisheries science applications. Can. J. Fish. Aquat. Sci. 62, 2425–2430 (2005).

    CAS 
    Article 

    Google Scholar 

  • Beckman, D. W. & Wilson, C. A. Seasonal timing of opaque zone formation in fish otoliths. In Recent Developments in Fish otolith Research (eds Secor, D. H. et al.) 27–43 (University of South Carolina Press, 1995).

    Google Scholar 

  • Hüssy, K. & Mosegaard, H. Atlantic cod (Gadus morhua) growth and otolith accretion characteristics modelled in a bioenergetics context. Can. J. Fish. Aquat. Sci. 61, 1021–1031 (2004).

    Article 

    Google Scholar 

  • Hoff, G. R. & Fuiman, L. A. Morphometry and composition of red drum otoliths: Changes associated with temperature, somatic growth rate, and age. Comp. Biochem. Physiol. 106A, 209–219 (1993).

    CAS 
    Article 

    Google Scholar 

  • Høie, H. & Folkvord, A. Estimating the timing of growth rings in Atlantic cod otoliths using stable oxygen isotopes. J. Fish Biol. 68(3), 826–837 (2006).

    Article 

    Google Scholar 

  • Buljan, M. & Zore-Armanda, M. Oceanographical properities of the Adriatic Sea. Oceanogr. Mar. Biol. Ann. Rev. 14, 11–98 (1976).

    CAS 

    Google Scholar 

  • Russo, T., Costa, C. & Cataudella, S. Correspondence between shape and feeding habit changes throughout ontogeny of gilthead sea bream Sparus aurata L., 1758. J. Fish Biol. 71, 629–656 (2007).

    Article 

    Google Scholar 

  • Ellis, J. E., Wiens, J. A. & Rodell, C. F. A conceptual model of diet selection as an ecosystem process. J. Theor. Biol. 60, 93–108 (1976).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Grbec, B. & Morović, M. Seasonal thermohaline fluctuations in the middle Adriatic Sea. Il Nuovo Cimento C 2, 561–576 (1997).

    ADS 

    Google Scholar 

  • Izzo, C., Reis-Santos, P. & Gillanders, B. M. Otolith chemistry does not just reflect environmental conditions: A meta-analytic evaluation. Fish Fish. 19, 441–454 (2018).

    Article 

    Google Scholar 

  • Gillikin, D. P., Wanamaker, A. D. & Andrus, C. F. T. Chemical sclerochronology. Chem. Geol. 526, 1–6 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Rea, D. G. Study of the experimental factors affecting raman band intensities in liquids. J. Opt. Soc. Am. 49, 90–101 (1959).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Tuschel, D. Practical group theory and Raman spectroscopy, part II: Application of polarization. Spectroscopy 29(9), 14–21 (2014).

    Google Scholar 

  • Sherwood, P. M. A. Vibrational Spectroscopy of Solids 4 (Cambridge University Press, 1972).

    Google Scholar 

  • Dick, S. et al. Surface-enhanced raman spectroscopy as a probe of the surface chemistry of nanostructured materials. Adv. Mater. 28(27), 5705–5711. https://doi.org/10.1002/adma.201505355 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Neilson, J. D. & Geen, G. H. Effects of feeding regimes and diel temperature cycles on otolith increment formation in juvenile chinook salmon, Oncorhynchus tshawytscha. Fish. Bull. 83, 91–101 (1985).

    Google Scholar 

  • Sturrock, A. M. et al. Quantifying physiological influences on otolith microchemistry. Method Ecol. Evol. 6, 806–816 (2018).

    Article 

    Google Scholar 

  • DHMZ. Meteorological and Hydrological Service. Meteo. Hydro. Bull. 6. www.meteo.hr (2019).

  • Jochum, K. P. et al. GeoReM: A new geochemical database for reference materials and isotopic standards. Geostand. Geoanalyt. Res. 29, 333–338 (2005).

    CAS 
    Article 

    Google Scholar 

  • Jochum, K. P. et al. Determination of reference values for NIST SRM 610–617 glasses following ISO guidelines. Geostand. Geoanal. Res. 36, 397–429 (2011).

    Article 
    CAS 

    Google Scholar 

  • Jochum, K. P. et al. Accurate trace element analysis of speleothems and biogenic calcium carbonates by LA-ICP-MS. Chem. Geol. 318–319, 31–44 (2012).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Jochum, K. P., Stoll, B., Herwig, K. & Willbold, M. Validation of LA-ICP-MS trace element analysis of geological glasses using a new solid-state 193 nm Nd:YAG laser and matrix-matched calibration. J. Anal. Atmos. Spectrom. 22, 112–121 (2007).

    CAS 
    Article 

    Google Scholar 

  • Mischel, S. A., Mertz-Kraus, R., Jochum, K. P. & Scholz, D. TERMITE: An R script for fast reduction of laser ablation inductively coupled plasma mass spectrometry data and its application to trace element measurements. Rapid Commun. Mass Spectrom. 131, 1079–1087 (2017).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Yoshinaga, J., Nakama, A., Morita, M. & Edmonds, J. S. Fish otolith reference material for quality assurance of chemical analyses. Mar. Chem. 69, 91–97 (2000).

    CAS 
    Article 

    Google Scholar 

  • Vrdoljak, D. et al. Otolith fingerprints reveals potential pollution exposure of newly settled juvenile Sparus aurata. Mar. Pollut. Bull. 160, 111695 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Anderson, M. J. & Willis, T. J. Canonical analysis of principal coordinates: A useful method of constrained ordination for ecology. Ecol. 84, 511–552 (2003).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Species- and site-specific circulating bacterial DNA in Subantarctic sentinel mussels Aulacomya atra and Mytilus platensis

    A highly conserved core bacterial microbiota with nitrogen-fixation capacity inhabits the xylem sap in maize plants