in

Distribution model transferability for a wide-ranging species, the Gray Wolf

[adace-ad id="91168"]
  • Elith, J. & Leathwick, J. R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697 (2009).

    Article 

    Google Scholar 

  • Guisan, A. & Thuiller, W. Predicting species distribution: Offering more than simple habitat models. Ecol. Lett. 8, 993–1009 (2005).

    PubMed 
    Article 

    Google Scholar 

  • Guisan, A. & Zimmermann, N. E. Predictive habitat distribution models in ecology. Ecol. Model. 135, 147–186 (2000).

    Article 

    Google Scholar 

  • Wilkinson, D. P., Golding, N., Guillera-Arroita, G., Tingley, R. & McCarthy, M. A. A comparison of joint species distribution models for presence–absence data. Methods Ecol. Evol. 10, 198–211 (2018).

    Article 

    Google Scholar 

  • Zimmermann, N. E., Edwards, T. C., Graham, C. H., Pearman, P. B. & Svenning, J.-C. New trends in species distribution modelling. Ecography (Cop.) 33, 985–989 (2010).

    Article 

    Google Scholar 

  • Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography (Cop.) 29, 129–151 (2006).

    Article 

    Google Scholar 

  • Kass, J. M. et al. Wallace: A flexible platform for reproducible modeling of species niches and distributions built for community expansion. Methods Ecol. Evol. 9, 1151–1156 (2018).

    Article 

    Google Scholar 

  • Morisette, J. T. et al. VisTrails SAHM: Visualization and workflow management for species habitat modeling. Ecography (Cop.) 36, 129–135 (2013).

    Article 

    Google Scholar 

  • Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M. B. BIOMOD—A platform for ensemble forecasting of species distributions. Ecography (Cop.) 32, 369–373 (2009).

    Article 

    Google Scholar 

  • Guisan, A. et al. Predicting species distributions for conservation decisions. Ecol. Lett. 16, 1424–1435 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Syfert, M. M. et al. Using species distribution models to inform IUCN Red List assessments. Biol. Conserv. 177, 174–184 (2014).

    Article 

    Google Scholar 

  • Robinson, A. P., Walshe, T., Burgman, M. A. & Nunn, M. Invasive Species: Risk Assessment and Management (Cambridge University Press, 2017).

    Book 

    Google Scholar 

  • Fontaine, J. J. Improving our legacy: Incorporation of adaptive management into state wildlife action plans. J. Environ. Manag. 92, 1403–1408 (2011).

    Article 

    Google Scholar 

  • Gantchoff, M., Conlee, L. & Belant, J. Conservation implications of sex-specific landscape suitability for a large generalist carnivore. Divers. Distrib. 25, 1488–1496 (2019).

    Article 

    Google Scholar 

  • Camaclang, A. E., Maron, M., Martin, T. G. & Possingham, H. P. Current practices in the identification of critical habitat for threatened species. Conserv. Biol. 29, 482–492 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Schwartz, M. W. The Performance of the Endangered Species Act. Annu. Rev. Ecol. Evol. Syst. 39, 279–299 (2008).

    Article 

    Google Scholar 

  • Acevedo, P. et al. Generalizing and transferring spatial models: A case study to predict Eurasian badger abundance in Atlantic Spain. Ecol. Model. 275, 1–8 (2014).

    Article 

    Google Scholar 

  • Werkowska, W., Márquez, A. L., Real, R. & Acevedo, P. A practical overview of transferability in species distribution modeling. Environ. Rev. 25, 127–133 (2017).

    Article 

    Google Scholar 

  • Barbosa, A. M., Real, R. & MarioVargas, J. Transferability of environmental favourability models in geographic space: The case of the Iberian desman (Galemys pyrenaicus) in Portugal and Spain. Ecol. Model. 220, 747–754 (2009).

    Article 

    Google Scholar 

  • Randin, C. F. et al. Are niche-based species distribution models transferable in space?. J. Biogeogr. 33, 1689–1703 (2006).

    Article 

    Google Scholar 

  • Jiménez-Valverde, A. et al. Use of niche models in invasive species risk assessments. Biol. Invasions 13, 2785–2797 (2011).

    Article 

    Google Scholar 

  • Torres, R. T. et al. Favourableness and connectivity of a Western Iberian landscape for the reintroduction of the iconic Iberian ibex Capra pyrenaica. Oryx 51, 709–717 (2016).

    Article 

    Google Scholar 

  • Luoto, M., Kuussaari, M. & Toivonen, T. Modelling butterfly distribution based on remote sensing data. J. Biogeogr. 29, 1027–1037 (2002).

    Article 

    Google Scholar 

  • Cerasoli, F. et al. Determinants of habitat suitability models transferability across geographically disjunct populations: Insights from Vipera ursinii urs inii. Ecol. Evol. 11, 3991–4011 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Dobrowski, S. Z. et al. Modeling plant ranges over 75 years of climate change in California, USA: Temporal transferability and species traits. Ecol. Monogr. 81, 241–257 (2011).

    Article 

    Google Scholar 

  • Townsend Peterson, A., Papeş, M. & Eaton, M. Transferability and model evaluation in ecological niche modeling: A comparison of GARP and Maxent. Ecography (Cop.) 30, 550–560 (2007).

    Article 

    Google Scholar 

  • Qiao, H. et al. An evaluation of transferability of ecological niche models. Ecography (Cop.) 42, 521–534 (2018).

    Article 

    Google Scholar 

  • Wenger, S. J. & Olden, J. D. Assessing transferability of ecological models: An underappreciated aspect of statistical validation. Methods Ecol. Evol. 3, 260–267 (2012).

    Article 

    Google Scholar 

  • Gantchoff, M., Conlee, L. & Belant, J. L. Planning for carnivore recolonization by mapping sex-specific landscape connectivity. Glob. Ecol. Conserv. 21, e00869 (2020).

    Article 

    Google Scholar 

  • Gantchoff, M. G. et al. Potential distribution and connectivity for recolonizing cougars in the Great Lakes region, USA. Biol. Conserv. 257, 109144 (2021).

    Article 

    Google Scholar 

  • Boudreau, M. et al. Spatial prioritization of public outreach in the face of carnivore recolonization. J. Appl. Ecol. 59, 757–767 (2002).

    Article 

    Google Scholar 

  • Chapron, G. et al. Recovery of large carnivores in Europe’s modern human-dominated landscapes. Science 80(346), 1517–1519 (2014).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Laliberte, A. S. & Ripple, W. J. Range contractions of North American carnivores and ungulates. Bioscience 54, 123 (2004).

    Article 

    Google Scholar 

  • Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 1241484 (2014).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Gompper, M. E., Belant, J. L. & Kays, R. Carnivore coexistence: America’s recovery. Science 347, 382–383 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Mech, L. D. Where can wolves live and how can we live with them?. Biol. Conserv. 210, 310–317 (2017).

    Article 

    Google Scholar 

  • United States Fish and Wildlife Service (USFWS). Endangered and threatened wildlife and plants; Removing the gray wolf (Canis lupus) from the list of endangered and threatened wildlife. Fed. Reg. 85(213), 69778–69895 (2020).

    Google Scholar 

  • Gehring, T. M. & Potter, B. A. Wolf habitat analysis in Michigan: An example of the need for proactive land management for carnivore species. Wild. Soc. Bull. 33, 1237–1244 (2005).

    Article 

    Google Scholar 

  • Falcucci, A., Maiorano, L., Tempio, G., Boitani, L. & Ciucci, P. Modeling the potential distribution for a range-expanding species: Wolf recolonization of the Alpine range. Biol. Conserv. 158, 63–72 (2013).

    Article 

    Google Scholar 

  • Torres, L. G. et al. Poor transferability of species distribution models for a pelagic predator, the grey petrel, indicates contrasting habitat preferences across ocean basins. PLoS One 10, e0120014 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Olson, L. E. et al. Improved prediction of Canada lynx distribution through regional model transferability and data efficiency. Ecol. Evol. 11, 1667–1690 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Carroll, C., Rohlf, D. J., vonHoldt, B. M., Treves, A. & Hendricks, S. A. Wolf delisting challenges demonstrate need for an improved framework for conserving intraspecific variation under the endangered species act. Bioscience 71, 73–84 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, L. et al. A new generation of the United States National Land Cover Database: Requirements, research priorities, design, and implementation strategies. ISPRS J. Photogramm. Remote Sens. 146, 108–123 (2018).

    ADS 
    Article 

    Google Scholar 

  • Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo-absences for species distribution models: How, where and how many?. Methods Ecol. Evol. 3, 327–338 (2012).

    Article 

    Google Scholar 

  • Marmion, M., Parviainen, M., Luoto, M., Heikkinen, R. K. & Thuiller, W. Evaluation of consensus methods in predictive species distribution modelling. Divers. Distrib. 15, 59–69 (2009).

    Article 

    Google Scholar 

  • Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).

    Article 

    Google Scholar 

  • Paton, R. S. & Matthiopoulos, J. Defining the scale of habitat availability for models of habitat selection. Ecology https://doi.org/10.1890/14-2241.1 (2015).

    Article 

    Google Scholar 

  • Derville, S., Torres, L. G., Iovan, C. & Garrigue, C. Finding the right fit: Comparative cetacean distribution models using multiple data sources and statistical approaches. Divers. Distrib. 24, 1657–1673 (2018).

    Article 

    Google Scholar 

  • Warren, D. L., Glor, R. E. & Turelli, M. Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evolution 62, 2868–2883 (2008).

    PubMed 
    Article 

    Google Scholar 

  • Warren, D. L., Glor, R. E. & Turelli, M. ENMTools: A toolbox for comparative studies of environmental niche models. Ecography https://doi.org/10.1111/j.1600-0587.2009.06142.x (2010).

    Article 

    Google Scholar 

  • Arntzen, J. W. From descriptive to predictive distribution models: A working example with Iberian amphibians and reptiles. Front. Zool. 3, 1–11 (2006).

    Article 

    Google Scholar 

  • Conway, K. Wolf recovery—GIS facilitates habitat mapping in the Great Lake States. GIS WORLD 9, 54–57 (1996).

    Google Scholar 

  • Boitani, L. Wolf conservation and recovery. In Wolves: Behavior, Ecology, and Conservation (eds Mech, L. D. & Boitani, L.) (University of Chicago Press, 2007).

    Google Scholar 

  • Mladenoff, D. J., Sickley, T. A., Haight, R. G. & Wydeven, A. P. A regional landscape analysis and prediction of favorable gray wolf habitat in the northern Great Lakes region. Conserv. Biol. 9, 279–294 (1995).

    Article 

    Google Scholar 

  • Treves, A., Martin, K. A., Wiedenhoeft, J. E. & Wydeven, A. P. Dispersal of gray wolves in the Great Lakes region. In Recovery of Gray Wolves in the Great Lakes Region of the United States 191–204 (Springer, 2009).

    Chapter 

    Google Scholar 

  • Nelson, M. E. Winter range arrival and departure of white-tailed deer in northeastern Minnesota. Can. J. Zool. 73, 1069–1076 (1995).

    Article 

    Google Scholar 

  • Droghini, A. & Boutin, S. Snow conditions influence grey wolf (Canis lupus) travel paths: The effect of human-created linear features. Can. J. Zool. 96, 39–47 (2018).

    Article 

    Google Scholar 

  • Beyer, D. E., Peterson, R. O., Vucetich, J. A. & Hammill, J. H. Wolf population changes in Michigan. In Recovery of Gray Wolves in the Great Lakes Region of the United States 65–85 (Springer, 2009).

    Chapter 

    Google Scholar 

  • Claeys, G. B. Wolves in the Lower Peninsula of Michigan: Habitat modeling, evaluation of connectivity, and capacity estimation (Doctoral dissertation, Duke University) (2010)..

  • Gehring, T. M. & Potter, B. A. Wolf habitat analysis in Michigan: An example of the need for proactive land management for carnivore species. Wildl. Soc. Bull. 33, 1237–1244 (2005).

    Article 

    Google Scholar 

  • Mancinelli, S., Falco, M., Boitani, L. & Ciucci, P. Social, behavioural and temporal components of wolf (Canis lupus) responses to anthropogenic landscape features in the central Apennines, Italy. J. Zool. 309, 114–124 (2019).

    Article 

    Google Scholar 

  • Potvin, M. J. et al. Monitoring and habitat analysis for wolves in upper Michigan. J. Wildl. Manag. 69, 1660–1669 (2005).

    Article 

    Google Scholar 

  • Whittington, J. et al. Caribou encounters with wolves increase near roads and trails: A time-to-event approach. J. Appl. Ecol. 48, 1535–1542 (2011).

    Article 

    Google Scholar 

  • Zimmermann, B., Nelson, L., Wabakken, P., Sand, H. & Liberg, O. Behavioral responses of wolves to roads: Scale-dependent ambivalence. Behav. Ecol. 25, 1353–1364 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kojola, I. et al. Wolf visitations close to human residences in Finland: The role of age, residence density, and time of day. Biol. Conserv. 198, 9–14 (2016).

    Article 

    Google Scholar 

  • Gaynor, K. M., Hojnowski, C. E., Carter, N. H. & Brashares, J. S. The influence of human disturbance on wildlife nocturnality. Science 360, 1232–1235 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kautz, T. M. et al. Large carnivore response to human road use suggests a landscape of coexistence. Glob. Ecol. Conserv. 30, e01772 (2021).

    Article 

    Google Scholar 

  • Thuiller, W., Brotons, L., Araújo, M. B. & Lavorel, S. Effects of restricting environmental range of data to project current and future species distributions. Ecography (Cop.) 27, 165–172 (2004).

    Article 

    Google Scholar 

  • Václavík, T. & Meentemeyer, R. K. Equilibrium or not? Modelling potential distribution of invasive species in different stages of invasion. Divers. Distrib. 18, 73–83 (2011).

    Article 

    Google Scholar 

  • VanDerWal, J., Shoo, L. P., Graham, C. & Williams, S. E. Selecting pseudo-absence data for presence-only distribution modeling: How far should you stray from what you know?. Ecol. Model. 220, 589–594 (2009).

    Article 

    Google Scholar 

  • Brum, F. T. et al. Global priorities for conservation across multiple dimensions of mammalian diversity. Proc. Natl. Acad. Sci. U.S.A. 114, 7641–7646 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rosauer, D. F., Pollock, L. J., Linke, S. & Jetz, W. Phylogenetically informed spatial planning is required to conserve the mammalian tree of life. Proc. Biol. Sci. 284, 20170627 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Guillera-Arroita, G. et al. Is my species distribution model fit for purpose? Matching data and models to applications. Glob. Ecol. Biogeogr. 24, 276–292 (2015).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    A global dataset of seaweed net primary productivity

    A strategy to assess spillover risk of bat SARS-related coronaviruses in Southeast Asia