in

Effects of physical parameters on fish migration between a reservoir and its tributaries

[adace-ad id="91168"]
  • Dugatkin, L. A. Principles of Animal Behavior 4th edn. (University of Chicago Press, 2018).

    Google Scholar 

  • Lucas, M. C. & Baras, E. Migration of Freshwater Fishes (Blackwell Science, 2001).

    Book 

    Google Scholar 

  • Northcote, T. G. Potamodromy in Sahnonidae—Living and moving in the fast lane. North Am. J. Fish. Manage. 17, 1029–1045 (1997).

    Article 

    Google Scholar 

  • Brönmark, C. et al. There and back again: Migration in freshwater fishes. Can. J. Zool. 92, 467–479 (2013).

    Article 

    Google Scholar 

  • L’Abée-Lund, J. H. & Vøllestad, L. A. Feeding migration of roach, Rutilus rutilus (L.), in Lake Arungen, Norway. J. Fish Biol. 30, 349–355 (1987).

    Article 

    Google Scholar 

  • Mouchlianitis, F. A. et al. Does fragmented river connectivity alter the reproductive behavior of the potamodromous fish Alburnus vistonicus? Hydrobiologia 848, 4029 (2021).

    Article 

    Google Scholar 

  • Brönmark, C., Skov, C., Brodersen, J., Nilsson, P. A. & Hansson, L.-A. Seasonal migration determined by a trade-off between predator avoidance and growth. PLoS ONE 3, 2–7 (2008).

    Article 

    Google Scholar 

  • Brodersen, J., Hansen, J. H. & Skov, C. Partial nomadism in large-bodied bream (Abramis brama). Ecol. Freshw. Fish 28, 650–660 (2019).

    Article 

    Google Scholar 

  • Magnuson, J. J., Crowder, L. B. & Medvick, P. A. Temperature as an ecological resource. Integr. Compar. Biol. 19, 331 (1979).

    Google Scholar 

  • Beamish, F. W. H. Swimming capacity. Fish Physiol. 7, 101 (1978).

    Article 

    Google Scholar 

  • Benitez, J. P. & Ovidio, M. The influence of environmental factors on the upstream movements of rheophilic cyprinids according to their position in a river basin. Ecol. Freshw. Fish 27, 660–671 (2018).

    Article 

    Google Scholar 

  • Lucas, M. C. & Batley, E. Seasonal movements and behaviour of adult Barbel Barbus barbus, a riverine cyprinid fish: Implications for river management. J. Appl. Ecol. 33, 1345–1358 (1996).

    Article 

    Google Scholar 

  • Benjamin, J. R., Vidergar, D. T. & Dunham, J. B. Thermal heterogeneity, migration, and consequences for spawning potential of female bull trout in a river–reservoir system. Ecol. Evol. 10, 4128 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Fernando, C. H. & Holčík, J. Fish in reservoirs. Int. Revue der gesamten Hydrobiol. Hydrogr. 76, 149–167 (1991).

    Article 

    Google Scholar 

  • Kubecka, J. Succession of fish communities in reservoirs of Central and Eastern Europe. Compar. Reserv. Limnol. Water Qual. Manage. https://doi.org/10.1007/978-94-017-1096-1_11 (1993).

    Article 

    Google Scholar 

  • Pfauserová, N., Slavík, O., Horký, P., Turek, J. & Randák, T. Spatial distribution of native fish species in tributaries is altered by the dispersal of non-native species from reservoirs. Sci. Total Environ. 755, 143108 (2021).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Hladík, M. & Kubečka, J. Fish migration between a temperate reservoir and its main tributary. Hydrobiologia 504, 251–266 (2003).

    Article 

    Google Scholar 

  • Reyes-Gavilan, F. G., Garrido, R., Nicieza, A. G., Toledo, M. M. & Brana, F. Fish community variation along physical gradients in short streams of northern Spain and the disruptive effect of dams. Hydrobiologia 321, 155–163 (1996).

    Article 

    Google Scholar 

  • Falke, J. A. & Gido, K. B. Spatial effects of reservoirs on fish assemblages in great plains streams in Kansas, USA. River Res. Appl. 22, 55–68 (2006).

    Article 

    Google Scholar 

  • Vitule, J. R. S., Skóra, F. & Abilhoa, V. Homogenization of freshwater fish faunas after the elimination of a natural barrier by a dam in Neotropics. Divers. Distrib. 18, 111–120 (2012).

    Article 

    Google Scholar 

  • Van der Zanden, M. J., Lapointe, N. W. R. & Marchetti, M. P. Non-indigenous fishes and their role in freshwater fish imperilment. In Conservation of Freshwater Fishes (eds Closs, G. P. et al.) 238–269 (Cambridge University Press, 2016).

    Chapter 

    Google Scholar 

  • Moyle, P. B. & Light, T. Biological invasions of fresh water: Empirical rules and assembly theory. Biol. Conserv. 78, 149–161 (1996).

    Article 

    Google Scholar 

  • Martinez, P. J., Chart, T. E., Trammell, M. A., Wullschleger, J. G. & Bergersen, E. P. Fish species composition before and after construction of a main stem reservoir on the White River, Colorado. Environ. Biol. Fish. 40, 227–239 (1994).

    Article 

    Google Scholar 

  • Carey, M. P., Sanderson, B. L., Barnas, K. A. & Olden, J. D. Native invaders—Challenges for science, management, policy, and society. Front. Ecol. Environ. 10, 373–381 (2012).

    Article 

    Google Scholar 

  • Cucherousset, J. & Olden, J. D. Ecological impacts of non-native freshwater fishes. Fisheries (Bethesda) 36, 215–230 (2011).

    Article 

    Google Scholar 

  • Havel, J. E., Lee, C. E. & Vander Zanden, M. J. Do reservoirs facilitate invasions into landscapes? Bioscience 55, 518 (2005).

    Article 

    Google Scholar 

  • Murphy, C. A., Arismendi, I., Taylor, G. A. & Johnson, S. L. Evidence for lasting alterations to aquatic food webs with short-duration reservoir draining. PLoS ONE 14, 1–12 (2019).

    Google Scholar 

  • Reid, A. J. et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 94, 849–873 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Pfauserová, N., Slavík, O., Horký, P., Kolářová, J. & Randák, T. Migration of non-native predator asp (Leuciscus aspius) from a reservoir poses a potential threat to native species in tributaries. Water (Basel) 11, 1306 (2019).

    Google Scholar 

  • Hladík, M. & Kubečka, J. The effect of water level fluctuation on tributary spawning migration of reservoir fish. Ecohydrol. Hydrobiol. 4, 449–457 (2004).

    Google Scholar 

  • Morán-López, R. & Uceda Tolosa, O. Relative leaping abilities of native versus invasive cyprinids as criteria for selective barrier design. Biol. Invas. 19, 1243–1253 (2017).

    Article 

    Google Scholar 

  • Winter, J. D. Underwater biotelemetry. In Fisheries Techniques (eds Nielson, L. A. & Johnson, D. L.) 371–395 (American Fisheries Society, 1983).

    Google Scholar 

  • Vostradovský, J. & Novák, M. Some opinions in regard to the Lipno Valley reservoir in 1958. Anim. Husb. 4, 877–888 (1959).

    Google Scholar 

  • Balon, E. K. Reproductive guilds of fishes: A proposal and definition. J. Fish. Res. Board Can. 32, 821–864 (1975).

    Article 

    Google Scholar 

  • Schiemer, F. & Waidbacher, H. Strategies for conservation of a Danubian fish fauna. River Conserv. Manage. https://doi.org/10.1016/0006-3207(92)90983-t (1992).

    Article 

    Google Scholar 

  • Molls, F. New insights into the migration and habitat use by bream and white bream in the floodplain of the River Rhine. J. Fish Biol. 55, 1187–1200 (1999).

    Article 

    Google Scholar 

  • Kafemann, R., Adlerstein, S. & Neukamm, R. Variation in otolith strontium and calcium ratios as an indicator of life-history strategies of freshwater fish species within a brackish water system. Fish. Res. 46, 313 (2000).

    Article 

    Google Scholar 

  • le Pichon, C. et al. Summer use of the tidal freshwaters of the River Seine by three estuarine fish: Coupling telemetry and GIS spatial analysis. Estuar. Coast. Shelf Sci. 196, 83 (2017).

    ADS 
    Article 

    Google Scholar 

  • Jurajda, P., Roche, K., Halačka, K., Mrkvová, M. & Zukal, J. Winter activity of common bream (Abramis brama L.) in a European reservoir. Fish. Manage. Ecol. 25, 163–171 (2018).

    Article 

    Google Scholar 

  • Lyons, J. & Lucas, M. C. The combined use of acoustic tracking and echosounding to investigate the movement and distribution of common bream (Abramis brama) in the River Trent, England. Hydrobiologia 483, 265–273 (2002).

    Article 

    Google Scholar 

  • Gardner, C. J., Deeming, D. C. & Eady, P. E. Seasonal water level manipulation for flood risk management influences home-range size of common bream Abramis brama L. in a lowland river. River Res. Appl. 31, 165–172 (2015).

    Article 

    Google Scholar 

  • Winter, E. R., Hindes, A. M., Lane, S. & Britton, J. R. Movements of common bream Abramis brama in a highly connected, lowland wetland reveal sub-populations with diverse migration strategies. Freshw. Biol. 66, 1410 (2021).

    CAS 
    Article 

    Google Scholar 

  • Gardner, C. J., Deeming, D. C. & Eady, P. E. Seasonal movements with shifts in lateral and longitudinal habitat use by common bream, Abramis brama, in a heavily modified lowland river. Fish. Manage. Ecol. 20, 315–325 (2013).

    Article 

    Google Scholar 

  • Skov, C. et al. Sizing up your enemy: Individual predation vulnerability predicts migratory probability. Proc. R. Soc. B Biol. Sci. 278, 1414–1418 (2011).

    Article 

    Google Scholar 

  • Cala, P. On the ecology of ide Leuciscus idus (L.) in the River Kävlingean, South Sweden. Rep. Inst. Freshw. Res. Drottningholm 50, 45–99 (1970).

    Google Scholar 

  • Winter, H. V. & Fredrich, F. Migratory behaviour of ide: A comparison between the lowland rivers Elbe, Germany, and Vecht, The Netherlands. J. Fish Biol. 63, 871–880 (2003).

    Article 

    Google Scholar 

  • de Leeuw, J. J. & Winter, H. V. Migration of rheophilic fish in the large lowland rivers Meuse and Rhine, the Netherlands. Fish. Manage. Ecol. 15, 409–415 (2008).

    Article 

    Google Scholar 

  • Kulíšková, P., Horký, P., Slavík, O. & Jones, J. I. Factors influencing movement behaviour and home range size in ide Leuciscus idus. J. Fish Biol. 74, 1269–1279 (2009).

    PubMed 
    Article 

    Google Scholar 

  • Rohtla, M. et al. Review and meta-analysis of the environmental biology and potential invasiveness of a poorly-studied cyprinid, the Ide Leuciscus idus. Rev. Fish. Sci. Aquac. 29, 1–37 (2020).

    Google Scholar 

  • Fredrich, F. Long-term investigations of migratory behaviour of asp (Aspius aspius L.) in the middle part of the Elbe River, Germany. J. Appl. Ichthyol. 19, 294–302 (2003).

    Article 

    Google Scholar 

  • Šmejkal, M. et al. Climbing up the ladder: Male reproductive behaviour changes with age in a long-lived fish. Behav. Ecol. Sociobiol. https://doi.org/10.1007/s00265-020-02961-7 (2021).

    Article 

    Google Scholar 

  • Šmejkal, M. et al. Seasonal and daily protandry in a cyprinid fish. Sci. Rep. 7, 1–9 (2017).

    Article 

    Google Scholar 

  • Merciai, R. et al. First record of the asp Leuciscus aspius introduced into the Iberian Peninsula. Limnetica 37, 341–344 (2018).

    Google Scholar 

  • Horký, P. & Slavík, O. Diel and seasonal rhythms of asp Leuciscus aspius (L.) in a riverine environment. Ethol. Ecol. Evol. 29, 449–459 (2017).

    Article 

    Google Scholar 

  • Allouche, S., Thévenet, A. & Gaudin, P. Habitat use by chub (Leuciscus cephalus L. 1766) in a large river, the French Upper Rhone, as determined by radiotelemetry. Arch. Hydrobiol. 145, 219–236 (1999).

    Article 

    Google Scholar 

  • Horký, P., Slavík, O., Bartoš, L., Kolářová, J. & Randák, T. Behavioural pattern in cyprinid fish below a weir as detected by radio telemetry. J. Appl. Ichthyol. 23, 679 (2007).

    Article 

    Google Scholar 

  • Sandlund, O. T., Museth, J. & Øistad, S. Migration, growth patterns, and diet of pike (Esox lucius) in a river reservoir and its inflowing river. Fish. Res. 173, 53–60 (2016).

    Article 

    Google Scholar 

  • Koed, A., Balleby, K., Mejlhede, P. & Aarestrup, K. Annual movement of adult pike (Esox lucius L.) in a lowland river. Ecol. Freshw. Fish 15, 191. https://doi.org/10.1111/j.1600-0633.2006.00136.x (2006).

    Article 

    Google Scholar 

  • Kobler, A., Klefoth, T. & Arlinghaus, R. Site fidelity and seasonal changes in activity centre size of female pike Esox lucius in a small lake. J. Fish Biol. https://doi.org/10.1111/j.1095-8649.2008.01952.x (2008).

    Article 

    Google Scholar 

  • Kobler, A., Klefoth, T., Mehner, T. & Arlinghaus, R. Coexistence of behavioural types in an aquatic top predator: A response to resource limitation? Oecologia. https://doi.org/10.1007/s00442-009-1415-9 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Boeuf, G. & Falcón, J. Photoperiod and growth in fish. Vie et Milieu 51, 247–266 (2001).

    Google Scholar 

  • Pfauserová, N., Slavík, O. & Horký, P. DATA: An increase in reservoir water levels signals non-native fish species to migrate into tributaries. Mendeley Data 1 (2021).

  • Stroup, W. W. Generalized Linear Mixed Models: Modern Concepts, Methods and Applications (CRC Press, 2012).

    MATH 

    Google Scholar 

  • Hastie, T. J. & Tibshirani, R. J. Generalized Additive Models (Chapman & Hall/CRC, 1990).

    MATH 

    Google Scholar 

  • Wood, S. N. Generalized Additive Models: An Introduction with R (Chapman and Hall/CRC, 2017).

    MATH 
    Book 

    Google Scholar 

  • Eubank, R. L. Approximate regression models and splines. Commun. Stat. Theory Methods 13, 433–484 (1984).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. Ser. B Stat. Methodol. 73, 3–36 (2011).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2021).

  • McCulloch, C. E., Searle, S. R. & Neuhaus, J. M. Generalized, Linear, and Mixed Models (Wiley, 2008).

    MATH 

    Google Scholar 

  • Hurlbert, S. H. Pseudoreplication and the design of ecological field experiments. Ecol. Monogr. 54, 187–211 (1984).

    Article 

    Google Scholar 

  • Maitland, P. S. & Campbell, R. N. Freshwater Fishes of the British Isles (HarperCollins Publishers, 1992).

    Google Scholar 

  • Kottelat, M. & Freyhof, J. J. Handbook of European freshwater fishes. Copeia. https://doi.org/10.1643/OT-08-098a.1 (2007).

    Article 

    Google Scholar 

  • Lucas, M. C. et al. Spatio-temporal variations in the distribution and abundance of fish in the Yorkshire Ouse system. Sci. Total Environ. 210–211, 437 (1998).

    ADS 
    Article 

    Google Scholar 

  • Lucas, M. C. The influence of environmental factors on movements of lowland-river fish in the Yorkshire Ouse system. Sci. Total Environ. 251–252, 223 (2000).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Mehner, T., Diekmann, M., Brämick, U. & Lemcke, R. Composition of fish communities in German lakes as related to lake morphology, trophic state, shore structure and human-use intensity. Freshw. Biol. 50, 70–85 (2005).

    CAS 
    Article 

    Google Scholar 

  • Johnson, P. T. J., Olden, J. D. & van der Zanden, M. J. Dam invaders: Impoundments facilitate biological invasions into freshwaters. Front. Ecol. Environ. 6, 357–363 (2008).

    Article 

    Google Scholar 

  • Liew, J. H., Tan, H. H. & Yeo, D. C. J. Dammed rivers: Impoundments facilitate fish invasions. Freshw. Biol. 61, 1421–1429 (2016).

    Article 

    Google Scholar 

  • Brito, M. F. G., Daga, V. S. & Vitule, J. R. S. Fisheries and biotic homogenization of freshwater fish in the Brazilian semiarid region. Hydrobiologia 847, 3877–3895 (2020).

    Article 

    Google Scholar 

  • Kärgenberg, E. et al. Migration patterns of a potamodromous piscivore, asp (Leuciscus aspius), in a river–lake system. J. Fish Biol. 97, 996–1008 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Poulet, N., Beaulaton, L. & Dembski, S. Time trends in fish populations in metropolitan France: Insights from national monitoring data. J. Fish Biol. 79, 1436–1452 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Elvira, B. Identification of Non-native freshwater Fishes Established in Europe and Assessment of Their Potential Threats to the Biological Diversity. Convention on the Conservation of European Wildlife and Natural Habitats, 35 (2001).

  • Global Invasive Species Database (GISD). Species Profile Leuciscus idus (2021). http://www.iucngisd.org/gisd/species.php?sc=613. Accessed 15 Sept 2021.

  • Nico, L., Fuller, P. & Neilson, M. Leuciscus idus (Linnaeus, 1758): U.S. Geological Survey, Nonindigenous Aquatic Species Database, Gainesville (2021). https://nas.er.usgs.gov/queries/factsheet.aspx?SpeciesID=557. Accessed 15 Sept 2021.

  • Ovidio, M. & Philippart, J. C. The impact of small physical obstacles on upstream movements of six species of fish: Synthesis of a 5-year telemetry study in the River Meuse basin. Hydrobiologia 483, 55–69 (2002).

    Article 

    Google Scholar 

  • Hansen, J. H. et al. Ecological consequences of animal migration: Prey partial migration affects predator ecology and prey communities. Ecosystems 23, 292–306 (2020).

    CAS 
    Article 

    Google Scholar 

  • Brodersen, J., Nilsson, P. A., Hansson, L.-A., Skov, C. & Brönmark, C. Condition-dependent individual decision-making determines cyprinid partial migration. Ecology 89, 1195–1200 (2008).

    PubMed 
    Article 

    Google Scholar 

  • Chapman, B. B. et al. To boldly go: Individual differences in boldness influence migratory tendency. Ecol. Lett. 14, 871–876 (2011).

    PubMed 
    Article 

    Google Scholar 

  • Harrison, P. M. et al. Personality-dependent spatial ecology occurs independently from dispersal in wild burbot (Lota lota). Behav. Ecol. 26, 483–492 (2015).

    Article 

    Google Scholar 

  • Rehage, J. S., Cote, J. & Sih, A. The role of dispersal behaviour and personality in post-establishment spread. In Biological Invasions and Animal Behaviour (eds Weis, J. S. & Sol, D.) 96–116 (Cambridge University Press, 2016).

    Chapter 

    Google Scholar 

  • Juette, T., Cucherousset, J. & Cote, J. Animal personality and the ecological impacts of freshwater non-native species. Curr. Zool. 60, 417–427 (2014).

    Article 

    Google Scholar 

  • Sol, D. & Maspons, J. Life history, behaviour and invasion success. Biol. Invas. Anim. Behav. https://doi.org/10.1017/cbo9781139939492.006 (2016).

    Article 

    Google Scholar 

  • Sol, D. & Weis, J. Highlights and insights from “biological invasions and animal behaviour”. Aquat. Invas. 14, 551–565 (2019).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    No effect of dual exposure to sulfoxaflor and a trypanosome parasite on bumblebee olfactory learning

    MIT Climate and Sustainability Consortium announces recipients of inaugural MCSC Seed Awards