in

Environmental crises at the Permian–Triassic mass extinction

[adace-ad id="91168"]
  • Wignall, P. B. The Worst of Times (Princeton Univ. Press, 2015).

  • Black, B. A., Karlstrom, L. & Mather, T. A. The life cycle of large igneous provinces. Nat. Rev. Earth Environ. 2, 840–857 (2021).

    Google Scholar 

  • Jin, Y. G. et al. Pattern of marine mass extinction near the Permian–Triassic boundary in south China. Science 289, 432–436 (2000).

    Google Scholar 

  • Song, H., Wignall, P. B., Tong, J. & Yin, H. Two pulses of extinction during the Permian–Triassic crisis. Nat. Geosci. 6, 52–56 (2013).

    Google Scholar 

  • Stanley, S. M. Estimates of the magnitudes of major marine mass extinctions in Earth history. Proc. Natl Acad. Sci. USA 113, E6325–E6334 (2016).

    Google Scholar 

  • Benton, M. J. & Newell, A. J. Impacts of global warming on Permo–Triassic terrestrial ecosystems. Gondwana Res. 25, 1308–1337 (2014).

    Google Scholar 

  • Brayard, A. et al. Transient metazoan reefs in the aftermath of the end-Permian mass extinction. Nat. Geosci. 4, 693–697 (2011).

    Google Scholar 

  • Brayard, A. et al. Good genes and good luck: ammonoid diversity and the end-Permian mass extinction. Science 325, 1118–1121 (2009).

    Google Scholar 

  • Scheyer, T. M., Romano, C., Jenks, J. & Bucher, H. Early triassic marine biotic recovery: the predators’ perspective. PLoS ONE 9, e88987 (2014).

    Google Scholar 

  • Retallack, G. J., Veevers, J. J. & Morante, R. Global coal gap between Permian–Triassic extinction and Middle Triassic recovery of peat-forming plants. Bull. Geolog. Soc. Am. 108, 195–207 (1996).

    Google Scholar 

  • Payne, J. L. et al. Large perturbations of the carbon cycle during recovery from the end-Permian extinction. Science 305, 506–509 (2004).

    Google Scholar 

  • Song, H., Wignall, P. B. & Dunhill, A. M. Decoupled taxonomic and ecological recoveries from the Permo–Triassic extinction. Sci. Adv. 4, eaat5091 (2018).

    Google Scholar 

  • Retallack, G. J. Postapocalyptic greenhouse paleoclimate revealed by earliest Triassic paleosols in the Sydney basin, Australia. Bull. Geol. Soc. Am. 111, 52–70 (1999).

    Google Scholar 

  • Ward, P. D., Montgomery, D. R. & Smith, R. Altered river morphology in South Africa related to the Permian–Triassic extinction. Science 289, 1740–1743 (2000).

    Google Scholar 

  • Wignall, P. B. & Twitchett, R. J. Extent, duration, and nature of the Permian–Triassic superanoxic event. Spec. Pap. Geol. Soc. Am. 356, 395–413 (2002).

    Google Scholar 

  • Rampino, M. R. & Stothers, R. B. Flood basalt volcanism during the past 250 million years. Science 241, 663–668 (1988).

    Google Scholar 

  • Renne, P. R. & Basu, A. R. Rapid eruption of the Siberian traps flood basalts at the Permo–Triassic boundary. Science 253, 176–179 (1991).

    Google Scholar 

  • Burgess, S. D. & Bowring, S. A. High-precision geochronology confirms voluminous magmatism before, during, and after Earth’s most severe extinction. Sci. Adv. 1, e1500470 (2015).

    Google Scholar 

  • Vasiljev, Y. R., Zolotukhin, V. V., Feoktistov, G. D. & Prusskaya, S. N. Volume estimation and genesis of Permian–Triassic trap magmatism from Siberian platform. Russ. Geol. Geophys. 41, 1696–1705 (2000).

    Google Scholar 

  • Dobretsov, N. L. Large igneous provinces of Asia (250 Ma): Siberian and Emeishan traps (plateau basalts) and associated granitoids. Geol. Geof. 46, 870–890 (2005).

    Google Scholar 

  • Augland, L. E. et al. The main pulse of the Siberian Traps expanded in size and composition. Sci. Rep. 9, 18723 (2019).

    Google Scholar 

  • Kasbohm, J., Schoene, B. & Burgess, S. in Large Igneous Provinces: A Driver of Global Environmental and Biotic Changes (eds Ernst, R. E., Dickson, A. & Bekker, A.) 27–82 (Wiley, 2021).

  • Burgess, S. D., Muirhead, J. D. & Bowring, S. A. Initial pulse of Siberian Traps sills as the trigger of the end-Permian mass extinction. Nat. Commun. 8, 164 (2017).

    Google Scholar 

  • Posenato, R. Marine biotic events in the lopingian succession and latest Permian extinction in the Southern Alps (Italy). Geol. J. 45, 195–215 (2010).

    Google Scholar 

  • Posenato, R. The end-Permian mass extinction (EPME) and the early Triassic biotic recovery in the western Dolomites (Italy): state of the art. Bull. Soc. Paleontol. Ital. 58, 11–34 (2019).

    Google Scholar 

  • Fielding, C. R. et al. Age and pattern of the southern high-latitude continental end-Permian extinction constrained by multiproxy analysis. Nat. Commun. 10, 385 (2019).

    Google Scholar 

  • Chu, D. et al. Ecological disturbance in tropical peatlands prior to marine Permian–Triassic mass extinction. Geology 48, 288–292 (2020).

    Google Scholar 

  • Gastaldo, R. A. et al. The base of the Lystrosaurus Assemblage Zone, Karoo basin, predates the end-Permian marine extinction. Nat. Commun. 11, 1428 (2020).

    Google Scholar 

  • Foote, M. Morphological and taxonomic diversity in clade’s history: the blastoid record and stochastic simulations. Contrib. Mus. Paleontol. 28, 101–140 (1991).

    Google Scholar 

  • Stanley, S. M. & Yang, X. A double mass extinction at the end of the Paleozoic era. Science 266, 1340–1344 (1994).

    Google Scholar 

  • Wang, X. D. & Sugiyama, T. Diversity and extinction patterns of Permian coral faunas of China. Lethaia 33, 285–294 (2000).

    Google Scholar 

  • Hallam, A. & Wignall, P. B. Mass Extinctions and their Aftermath (Oxford Univ. Press, 1997).

  • Orchard, M. J. Conodont diversity and evolution through the latest Permian and Early Triassic upheavals. Palaeogeogr. Palaeoclimatol. Palaeoecol. 252, 93–117 (2007).

    Google Scholar 

  • Romano, C. et al. Permian–Triassic Osteichthyes (bony fishes): diversity dynamics and body size evolution. Biol. Rev. 91, 106–147 (2016).

    Google Scholar 

  • Tu, C., Chen, Z. Q. & Harper, D. A. T. Permian–Triassic evolution of the Bivalvia: extinction-recovery patterns linked to ecologic and taxonomic selectivity. Palaeogeogr. Palaeoclimatol. Palaeoecol. 459, 53–62 (2016).

    Google Scholar 

  • Schaal, E. K., Clapham, M. E., Rego, B. L., Wang, S. C. & Payne, J. L. Comparative size evolution of marine clades from the Late Permian through Middle Triassic. Paleobiology 42, 127–142 (2016).

    Google Scholar 

  • Chen, J. et al. Size variation of brachiopods from the late Permian through the middle Triassic in south China: evidence for the Lilliput effect following the Permian–Triassic extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 519, 248–257 (2019).

    Google Scholar 

  • Feng, Y., Song, H. & Bond, D. P. G. Size variations in foraminifers from the early Permian to the Late Triassic: implications for the Guadalupian–Lopingian and the Permian–Triassic mass extinctions. Paleobiology 46, 511–532 (2020).

    Google Scholar 

  • Luo, G., Lai, X., Jiang, H. & Zhang, K. Size variation of the end-Permian conodont Neogondolella at Meishan section, Changxing, Zhejiang and its significance. Sci. China Ser. D 49, 337–347 (2006).

    Google Scholar 

  • Brayard, A. et al. Early Triassic Gulliver gastropods: spatio-temporal distribution and significance for biotic recovery after the end-Permian mass extinction. Earth Sci. Rev. 146, 31–64 (2015).

    Google Scholar 

  • Knoll, A. H., Bambach, R. K., Canfield, D. E. & Grotzinger, J. P. Comparative Earth history and late Permian mass extinction. Science 273, 452–457 (1996).

    Google Scholar 

  • Knoll, A. H., Bambach, R. K., Payne, J. L., Pruss, S. & Fischer, W. W. Paleophysiology and end-Permian mass extinction. Earth Planet. Sci. Lett. 256, 295–313 (2007).

    Google Scholar 

  • Clapham, M. E. & Payne, J. L. Acidification, anoxia, and extinction: a multiple logistic regression analysis of extinction selectivity during the Middle and Late Permian. Geology 39, 1059–1062 (2011).

    Google Scholar 

  • Vázquez, P. & Clapham, M. E. Extinction selectivity among marine fishes during multistressor global change in the end-Permian and end-Triassic crises. Geology 45, 395–398 (2017).

    Google Scholar 

  • Payne, J. L. & Finnegan, S. The effect of geographic range on extinction risk during background and mass extinction. Proc. Natl Acad. Sci. USA 104, 10506–10511 (2007).

    Google Scholar 

  • Dai, X. & Song, H. Toward an understanding of cosmopolitanism in deep time: a case study of ammonoids from the middle Permian to the Middle Triassic. Paleobiology 46, 533–549 (2020).

    Google Scholar 

  • Kiessling, W. et al. Pre-mass extinction decline of latest Permian ammonoids. Geology 46, 283–286 (2018).

    Google Scholar 

  • Rampino, M. R. & Adler, A. C. Evidence for abrupt latest Permian mass extinction of foraminifera: results of tests for the Signor–Lipps effect. Geology 26, 415–418 (1998).

    Google Scholar 

  • Song, H., Tong, J., Chen, Z. Q., Yang, H. & Wang, Y. End-Permian mass extinction of foraminifers in the Nanpanjiang basin, south China. J. Paleontol. 83, 718–738 (2009).

    Google Scholar 

  • Wignall, P. B. & Hallam, A. Anoxia as a cause of the Permian/Triassic mass extinction: facies evidence from northern Italy and the western United States. Palaeogeogr. Palaeoclimatol. Palaeoecol. 93, 21–46 (1992).

    Google Scholar 

  • Shen, S. Z. et al. A sudden end-Permian mass extinction in south China. Bull. Geol. Soc. Am. 131, 205–223 (2019).

    Google Scholar 

  • Angiolini, L., Checconi, A., Gaetani, M. & Rettori, R. The latest Permian mass extinction in the Alborz Mountains (North Iran). Geol. J. 45, 216–229 (2010).

    Google Scholar 

  • Yin, H., Feng, Q., Lai, X., Baud, A. & Tong, J. The protracted Permo-Triassic crisis and multi-episode extinction around the Permian–Triassic boundary. Glob. Planet. Change 55, 1–20 (2007).

    Google Scholar 

  • Wignall, P. B. & Newton, R. Contrasting deep-water records from the Upper Permian and Lower Triassic of South Tibet and British Columbia: evidence for a diachronous mass extinction. Palaios 18, 153–167 (2003).

    Google Scholar 

  • Wang, Y. et al. Quantifying the process and abruptness of the end-Permian mass extinction. Paleobiology 40, 113–129 (2014).

    Google Scholar 

  • Liu, X., Song, H., Bond, D. P. G., Tong, J. & Benton, M. J. Migration controls extinction and survival patterns of foraminifers during the Permian–Triassic crisis in south China. Earth Sci. Rev. 209, 103329 (2020).

    Google Scholar 

  • Chen, Z. Q. et al. Environmental and biotic turnover across the Permian–Triassic boundary on a shallow carbonate platform in western Zhejiang, south China. Aust. J. Earth Sci. 56, 775–797 (2009).

    Google Scholar 

  • He, W. H. et al. Late Permian marine ecosystem collapse began in deeper waters: evidence from brachiopod diversity and body size changes. Geobiology 13, 123–138 (2015).

    Google Scholar 

  • Burgess, S. D., Bowring, S. & Shen, S. Z. High-precision timeline for Earth’s most severe extinction. Proc. Natl Acad. Sci. USA 111, 3316–3321 (2014).

    Google Scholar 

  • Yang, H. et al. Composition and structure of microbialite ecosystems following the end-Permian mass extinction in south China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 308, 111–128 (2011).

    Google Scholar 

  • Tian, L. et al. Distribution and size variation of ooids in the aftermath of the Permian–Triassic mass extinction. Palaios 30, 714–727 (2015).

    Google Scholar 

  • Retallack, G. J. Permian–Triassic life crisis on land. Science 267, 77–80 (1995).

    Google Scholar 

  • Looy, C. V., Brugman, W. A., Dilcher, D. L. & Visscher, H. The delayed resurgence of equatorial forests after the Permian–Triassic ecologic crisis. Proc. Natl Acad. Sci. USA 96, 13857–13862 (1999).

    Google Scholar 

  • Hermann, E. et al. Terrestrial ecosystems on North Gondwana following the end-Permian mass extinction. Gondwana Res. 20, 630–637 (2011).

    Google Scholar 

  • Cascales-Miñana, B., Diez, J. B., Gerrienne, P. & Cleal, C. J. A palaeobotanical perspective on the great end-Permian biotic crisis. Hist. Biol. 28, 1066–1074 (2016).

    Google Scholar 

  • Yu, J. et al. Vegetation changeover across the Permian–Triassic boundary in southwest China. Extinction, survival, recovery and palaeoclimate: a critical review. Earth Sci.Rev. 149, 203–224 (2015).

    Google Scholar 

  • Vajda, V. et al. End-Permian (252 Mya) deforestation, wildfires and flooding—an ancient biotic crisis with lessons for the present. Earth Planet. Sci. Lett. 529, 115875 (2020).

    Google Scholar 

  • Schneebeli-Hermann, E., Hochuli, P. A. & Bucher, H. Palynofloral associations before and after the Permian–Triassic mass extinction, Kap Stosch, East Greenland. Glob. Planet. Change 155, 178–195 (2017).

    Google Scholar 

  • Nowak, H., Schneebeli-Hermann, E. & Kustatscher, E. No mass extinction for land plants at the Permian–Triassic transition. Nat. Commun. 10, 384 (2019).

    Google Scholar 

  • Chu, D. et al. Biostratigraphic correlation and mass extinction during the Permian–Triassic transition in terrestrial-marine siliciclastic settings of south China. Glob. Planet. Change 146, 67–88 (2016).

    Google Scholar 

  • Zhang, H. et al. The terrestrial end-Permian mass extinction in south China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 448, 108–124 (2016).

    Google Scholar 

  • Krassilov, V. & Karasev, E. Paleofloristic evidence of climate change near and beyond the Permian–Triassic boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 284, 326–336 (2009).

    Google Scholar 

  • Mcloughlin, S., Lindström, S. & Drinnan, A. N. Gondwanan floristic and sedimentological trends during the Permian–Triassic transition: new evidence from the Amery Group, northern Prince Charles Mountains, east Antarctica. Antarctic Sci. 9, 281–298 (1997).

    Google Scholar 

  • Kerp, H., Hamad, A. A., Vörding, B. & Bandel, K. Typical Triassic Gondwanan floral elements in the Upper Permian of the paleotropics. Geology 34, 265–268 (2006).

    Google Scholar 

  • Eshet, Y., Rampino, M. R. & Visscher, H. Fungal event and palynological record of ecological crisis and recovery across the Permian–Triassic boundary. Geology 23, 967–970 (1995).

    Google Scholar 

  • Visscher, H. et al. Environmental mutagenesis during the end-Permian ecological crisis. Proc. Natl Acad. Sci. USA 101, 12952–12956 (2004).

    Google Scholar 

  • Looy, C. V., Collinson, M. E., Van Konijnenburg-Van Cittert, J. H. A., Visscher, H. & Brain, A. P. R. The ultrastructure and botanical affinity of end-Permian spore tetrads. Int. J. Plant Sci. 166, 875–887 (2005).

    Google Scholar 

  • Foster, C. B. & Afonin, S. A. Abnormal pollen grains: an outcome of deteriorating atmospheric conditions around the Permian–Triassic boundary. J. Geol. Soc. 162, 653–659 (2005).

    Google Scholar 

  • Hochuli, P. A., Schneebeli-Hermann, E., Mangerud, G. & Bucher, H. Evidence for atmospheric pollution across the Permian–Triassic transition. Geology 45, 1123–1126 (2017).

    Google Scholar 

  • Rampino, M. R. & Eshet, Y. The fungal and acritarch events as time markers for the latest Permian mass extinction: an update. Geosci. Front. 9, 147–154 (2018).

    Google Scholar 

  • Benca, J. P., Duijnstee, I. A. P. & Looy, C. V. UV-B–induced forest sterility: implications of ozone shield failure in Earth’s largest extinction. Sci. Adv. 4, e1700618 (2018).

    Google Scholar 

  • Chu, D. et al. Metal-induced stress in survivor plants following the end-Permian collapse of land ecosystems. Geology 49, 657–661 (2021).

    Google Scholar 

  • Schneebeli-Hermann, E. et al. Vegetation history across the Permian–Triassic boundary in Pakistan (Amb section, Salt Range). Gondwana Res. 27, 911–924 (2015).

    Google Scholar 

  • Visscher, H. et al. The terminal paleozoic fungal event: evidence of terrestrial ecosystem destabilization and collapse. Proc. Natl Acad. Sci. USA 93, 2155–2158 (1996).

    Google Scholar 

  • Visscher, H., Sephton, M. A. & Looy, C. V. Fungal virulence at the time of the end-Permian biosphere crisis? Geology 39, 883–886 (2011).

    Google Scholar 

  • Looy, C. V., Twitchett, R. J., Dilcher, D. L., Van Konijnenburg-Van Cittert, J. H. A. & Visscher, H. Life in the end-Permian dead zone. Proc. Natl Acad. Sci. USA 98, 7879–7883 (2001).

    Google Scholar 

  • Bercovici, A. & Vajda, V. Terrestrial Permian–Triassic boundary sections in south China. Glob. Planet. Change 143, 31–33 (2016).

    Google Scholar 

  • Hochuli, P. A. Interpretation of “fungal spikes” in Permian–Triassic boundary sections. Glob. Planet. Change 144, 48–50 (2016).

    Google Scholar 

  • Angielczyk, K. D., Roopnarine, P. D. & Wang, S. C. Modeling the role of primary productivity disruption in end-Permian extinctions, Karoo basin, South Africa. New Mex. Mus. Nat. Hist. Sci. Bull. 30, 16–23 (2005).

    Google Scholar 

  • Labandeira, C. C. & Sepkoski, J. J. Insect diversity in the fossil record. Science 261, 310–315 (1993).

    Google Scholar 

  • Shcherbakov, D. E. On Permian and Triassic insect faunas in relation to biogeography and the Permian-Triassic crisis. Paleontol. J. 42, 15–31 (2008).

    Google Scholar 

  • Condamine, F. L., Clapham, M. E. & Kergoat, G. J. Global patterns of insect diversification: towards a reconciliation of fossil and molecular evidence? Sci. Rep. 6, 19208 (2016).

    Google Scholar 

  • Smith, R. M. H. & Ward, P. D. Pattern of vertebrate extinctions across an event bed at the Permian–Triassic boundary in the Karoo basin of South Africa. Geology 29, 1147 (2001).

    Google Scholar 

  • Benton, M. J., Tverdokhlebov, V. P. & Surkov, M. V. Ecosystem remodelling among vertebrates at the Permian–Triassic boundary in Russia. Nature 432, 97–100 (2004).

    Google Scholar 

  • Viglietti, P. A. et al. Evidence from South Africa for a protracted end-Permian extinction on land. Proc. Natl Acad. Sci. USA 118, e2017045118 (2021).

    Google Scholar 

  • Sennikov, A. G. & Golubev, V. K. Vyazniki biotic assemblage of the terminal Permian. Paleontol. J. 40, S475–S481 (2006).

    Google Scholar 

  • Sennikov, A. G. & Golubev, V. K. On the faunal verification of the Permo–Triassic boundary in continental deposits of eastern Europe: 1. Gorokhovets–Zhukov ravine. Paleontol. J. 46, 313–323 (2012).

    Google Scholar 

  • Zhu, Z. et al. Altered fluvial patterns in north China indicate rapid climate change linked to the Permian–Triassic mass extinction. Sci. Rep. 9, 16818 (2019).

    Google Scholar 

  • Shen, S. Z. et al. Calibrating the end-Permian mass extinction. Science 334, 1367–1372 (2011).

    Google Scholar 

  • Twitchett, R. J., Looy, C. V., Morante, R., Visscher, H. & Wignall, P. B. Rapid and synchronous collapse of marine and terrestrial ecosystems during the end-Permian biotic crisis. Geology 29, 351–354 (2001).

    Google Scholar 

  • Biswas, R. K., Kaiho, K., Saito, R., Tian, L. & Shi, Z. Terrestrial ecosystem collapse and soil erosion before the end-Permian marine extinction: organic geochemical evidence from marine and non-marine records. Glob. Planet. Change 195, 103327 (2020).

    Google Scholar 

  • Aftabuzzaman, M. D. et al. End-Permian terrestrial disturbance followed by the complete plant devastation, and the vegetation proto-recovery in the earliest-Triassic recorded in coastal sea sediments. Glob. Planet. Change 205, 103621 (2021).

    Google Scholar 

  • Gastaldo, R. A., Neveling, J., Geissman, J. W., Kamo, S. L. & Looy, C. V. A tale of two Tweefonteins: what physical correlation, geochronology, magnetic polarity stratigraphy, and palynology reveal about the end-Permian terrestrial extinction paradigm in South Africa. GSA Bull. https://doi.org/10.1130/b35830.1 (2021).

  • Yan, Z. et al. Frequent and intense fires in the final coals of the Paleozoic indicate elevated atmospheric oxygen levels at the onset of the end-Permian mass extinction event. Int. J.Coal Geol. 207, 75–83 (2019).

    Google Scholar 

  • DiMichele, W. A., Bashforth, A. R., Falcon-Lang, H. J. & Lucas, S. G. Uplands, lowlands, and climate: taphonomic megabiases and the apparent rise of a xeromorphic, drought-tolerant flora during the Pennsylvanian–Permian transition. Palaeogeogr. Palaeoclimatol. Palaeoecol. 559, 109965 (2020).

    Google Scholar 

  • Smith, R. M. H. & Botha-Brink, J. Anatomy of a mass extinction: sedimentological and taphonomic evidence for drought-induced die-offs at the Permo-Triassic boundary in the main Karoo basin, South Africa. Palaeogeogr. Palaeoclimatol. Palaeoecol. 396, 99–118 (2014).

    Google Scholar 

  • Xiong, C. & Wang, Q. Permian–Triassic land-plant diversity in south China: was there a mass extinction at the Permian/Triassic boundary? Paleobiology 37, 157–167 (2011).

    Google Scholar 

  • Yu, J. et al. Terrestrial events across the Permian–Triassic boundary along the Yunnan–Guizhou border, SW China. Glob. Planet. Change 55, 193–208 (2007).

    Google Scholar 

  • Becker, L., Poreda, R. J., Hunt, A. G., Bunch, T. E. & Rampino, M. Impact event at the Permian–Triassic boundary: evidence from extraterrestrial noble gases in fullerenes. Science 291, 1530–1533 (2001).

    Google Scholar 

  • Basu, A. R., Petaev, M. I., Poreda, R. J., Jacobsen, S. B. & Becker, L. Chondritic meteorite fragments associated with the Permian–Triassic boundary in Antarctica. Science 302, 1388–1392 (2003).

    Google Scholar 

  • Isozaki, Y. Permo–Triassic boundary superanoxia and stratified superocean: records from lost deep sea. Science 276, 235–238 (1997).

    Google Scholar 

  • French, B. M. & Koeberl, C. The convincing identification of terrestrial meteorite impact structures: what works, what doesn’t, and why. Earth Sci. Rev. 98, 123–170 (2010).

    Google Scholar 

  • Saunders, A. D., England, R. W., Reichow, M. K. & White, R. V. A mantle plume origin for the Siberian traps: uplift and extension in the west Siberian basin, Russia. Lithos 79, 407–424 (2005).

    Google Scholar 

  • Reichow, M. K. et al. Petrogenesis and timing of mafic magmatism, south Taimyr, Arctic Siberia: a northerly continuation of the Siberian Traps? Lithos 248–251, 382–401 (2016).

    Google Scholar 

  • Naldrett, A. J., Lightfoot, P. C., Fedorenko, V., Doherty, W. & Gorbachev, N. S. Geology and geochemistry of intrusions and flood basalts of the Noril’sk region, USSR, with implications for the origin of the Ni-Cu ores. Econ. Geol. 87, 975–1004 (1992).

    Google Scholar 

  • Hawkesworth, C. J. et al. Magma differentiation and mineralisation in the Siberian continental flood basalts. Lithos 34, 61–88 (1995).

    Google Scholar 

  • Fedorenko, V. A. et al. Petrogenesis of the flood-basalt sequence at Noril’sk, north central Siberia. Int. Geol. Rev. 38, 99–135 (1996).

    Google Scholar 

  • Arndt, N., Chauvel, C., Czamanske, G. & Fedorenko, V. Two mantle sources, two plumbing systems: tholeiitic and alkaline magmatism of the Maymecha River basin, Siberian flood volcanic province. Contribut. Mineral. Petrol. 133, 297–313 (1998).

    Google Scholar 

  • Sobolev, S. V. et al. Linking mantle plumes, large igneous provinces and environmental catastrophes. Nature 477, 312–316 (2011).

    Google Scholar 

  • Sobolev, A. V., Arndt, N. T., Krivolutskaya, N. A., Kuzmin, D. V. & Sobolev, S. V. in Volcanism and Global Environmental Change (eds Schmidt, A. Fristad, K. & Elkins-Tanton, L.) 147–163 (Cambridge Univ. Press, 2015).

  • Black, B. A., Elkins-Tanton, L. T., Rowe, M. C. & Peate, I. U. Magnitude and consequences of volatile release from the Siberian Traps. Earth Planet. Sci. Lett. 317–318, 363–373 (2012).

    Google Scholar 

  • Broadley, M. W., Barry, P. H., Ballentine, C. J., Taylor, L. A. & Burgess, R. End-Permian extinction amplified by plume-induced release of recycled lithospheric volatiles. Nat. Geosci. 11, 682–687 (2018).

    Google Scholar 

  • Elkins-Tanton, L. T. et al. Field evidence for coal combustion links the 252 Ma Siberian Traps with global carbon disruption. Geology 48, 986–991 (2020).

    Google Scholar 

  • Grasby, S. E. & Beauchamp, B. Latest Permian to Early Triassic basin-to-shelf anoxia in the Sverdrup basin, Arctic Canada. Chem. Geol. 264, 232–246 (2009).

    Google Scholar 

  • Grasby, S. E., Sanei, H. & Beauchamp, B. Catastrophic dispersion of coal fly ash into oceans during the latest Permian extinction. Nat. Geosci. 4, 104–107 (2011).

    Google Scholar 

  • Sanei, H., Grasby, S. E. & Beauchamp, B. Latest Permian mercury anomalies. Geology 40, 63–66 (2012).

    Google Scholar 

  • Reichow, M. K., Saunders, A. D., White, R. V., Al’Mukhamedov, A. I. & Medvedev, A. Y. Geochemistry and petrogenesis of basalts from the west Siberian basin: an extension of the Permo–Triassic Siberian Traps, Russia. Lithos 79, 425–452 (2005).

    Google Scholar 

  • Jerram, D. A., Svensen, H. H., Planke, S., Polozov, A. G. & Torsvik, T. H. The onset of flood volcanism in the north-western part of the Siberian Traps: explosive volcanism versus effusive lava flows. Palaeogeogr. Palaeoclimatol. Palaeoecol. 441, 38–50 (2016).

    Google Scholar 

  • Svensen, H. et al. Siberian gas venting and the end-Permian environmental crisis. Earth Planet. Sci.Lett. 277, 490–500 (2009).

    Google Scholar 

  • Svensen, H. H. et al. Sills and gas generation in the Siberian Traps. Phil. Trans. R. Soc. A 376, 20170080 (2018).

    Google Scholar 

  • Davydov, V. I. Tunguska сoals, Siberian sills and the Permian–Triassic extinction. Earth Sci. Rev. 212, 103438 (2021).

    Google Scholar 

  • Callegaro, S. et al. Geochemistry of deep Tunguska basin sills, Siberian Traps: correlations and potential implications for the end-Permian environmental crisis. Contribut. Mineral. Petrol. 176, 49 (2021).

    Google Scholar 

  • Wooden, J. L. et al. Isotopic and trace-element constraints on mantle and crustal contributions to Siberian continental flood basalts, Noril’sk area, Siberia. Geochim. Cosmochim. Acta 57, 3677–3704 (1993).

    Google Scholar 

  • Arndt, N. T., Czmanske, G. K., Walker, R. J., Chauvel, C. & Fedorenko, V. A. Geochemistry and origin of the intrusive hosts of the Noril’sk-Talnakh Cu-Ni-PGE sulfide deposits. Eco. Geol. 98, 495–515 (2003).

    Google Scholar 

  • Pang, K. N. et al. A petrologic, geochemical and Sr-Nd isotopic study on contact metamorphism and degassing of Devonian evaporites in the Norilsk aureoles, Siberia. Contrib. Mineral. Petrol. 165, 683–704 (2013).

    Google Scholar 

  • Yao, Z. S. & Mungall, J. E. Linking the Siberian flood basalts and giant Ni-Cu-PGE sulfide deposits at Norilsk. J. Geophys. Res. Solid Earth 126, e2020JB020823 (2021).

    Google Scholar 

  • Sibik, S., Edmonds, M., Maclennan, J. & Svensen, H. Magmas erupted during the main pulse of Siberian Traps volcanism were volatile-poor. J. Petrol. 56, 2089–2116 (2015).

    Google Scholar 

  • Retallack, G. J. & Jahren, A. H. Methane release from igneous intrusion of coal during late Permian extinction events. J. Geol. 116, 1–20 (2008).

    Google Scholar 

  • Iacono-Marziano, G. et al. Gas emissions due to magma-sediment interactions during flood magmatism at the Siberian Traps: gas dispersion and environmental consequences. Earth Planet. Sci. Lett. 357–358, 308–318 (2012).

    Google Scholar 

  • Fristad, K. E., Svensen, H. H., Polozov, A. & Planke, S. Formation and evolution of the end-Permian Oktyabrsk volcanic crater in the Tunguska basin, eastern Siberia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 468, 76–87 (2017).

    Google Scholar 

  • Polozov, A. G. et al. The basalt pipes of the Tunguska basin (Siberia, Russia): high temperature processes and volatile degassing into the end-Permian atmosphere. Palaeogeogr. Palaeoclimatol. Palaeoecol. 441, 51–64 (2016).

    Google Scholar 

  • Elkins-Tanton, L. T. et al. The last lavas erupted during the main phase of the Siberian flood volcanic province: results from experimental petrology. Contribut. Mineral. Petrol. 153, 191–209 (2007).

    Google Scholar 

  • Schmidt, A. et al. Selective environmental stress from sulphur emitted by continental flood basalt eruptions. Nat. Geosci. 9, 77–82 (2016).

    Google Scholar 

  • Black, B. A. et al. Systemic swings in end-Permian climate from Siberian Traps carbon and sulfur outgassing. Nat. Geosci. 11, 949–954 (2018).

    Google Scholar 

  • Schobben, M., Joachimski, M. M., Korn, D., Leda, L. & Korte, C. Palaeotethys seawater temperature rise and an intensified hydrological cycle following the end-Permian mass extinction. Gondwana Res. 26, 675–683 (2014).

    Google Scholar 

  • Chen, J. et al. Abrupt warming in the latest Permian detected using high-resolution in situ oxygen isotopes of conodont apatite from Abadeh, central Iran. Palaeogeogr. Palaeoclimatol. Palaeoecol. 560, 109973 (2020).

    Google Scholar 

  • Joachimski, M. M., Alekseev, A. S., Grigoryan, A. & Gatovsky, Y. A. Siberian trap volcanism, global warming and the Permian–Triassic mass extinction: new insights from Armenian Permian–Triassic sections. Bull. Geol. Soc. Am. 132, 427–443 (2020).

    Google Scholar 

  • Sun, Y. et al. Lethally hot temperatures during the early Triassic greenhouse. Science 338, 366–370 (2012).

    Google Scholar 

  • Joachimski, M. M. et al. Climate warming in the latest Permian and the Permian–Triassic mass extinction. Geology 40, 195–198 (2012).

    Google Scholar 

  • Jiang, H., Joachimski, M. M., Wignall, P. B., Zhang, M. & Lai, X. A delayed end-Permian extinction in deep-water locations and its relationship to temperature trends (Bianyang, Guizhou province, south China). Palaeogeogr. Palaeoclimatol. Palaeoecol. 440, 690–695 (2015).

    Google Scholar 

  • Chen, J. et al. High-resolution SIMS oxygen isotope analysis on conodont apatite from south China and implications for the end-Permian mass extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 448, 26–38 (2016).

    Google Scholar 

  • Shen, S. et al. Permian integrative stratigraphy and timescale of China. Sci. China Earth Sci. 62, 154–188 (2019).

    Google Scholar 

  • Pörtner, H. O. Oxygen- And capacity-limitation of thermal tolerance: a matrix for integrating climate-related stressor effects in marine ecosystems. J. Exp. Biol. 213, 881–893 (2010).

    Google Scholar 

  • Pörtner, H. O. Integrating climate-related stressor effects on marine organisms: unifying principles linking molecule to ecosystem-level changes. Mar. Ecol. Progr. Ser. 470, 273–290 (2012).

    Google Scholar 

  • Bijma, J., Pörtner, H. O., Yesson, C. & Rogers, A. D. Climate change and the oceans — what does the future hold? Mar. Pollut. Bull. 74, 495–505 (2013).

    Google Scholar 

  • Song, H. et al. Flat latitudinal diversity gradient caused by the Permian–Triassic mass extinction. Proc. Natl Acad. Sci. USA 117, 17578–17583 (2020).

    Google Scholar 

  • Penn, J. L., Deutsch, C., Payne, J. L. & Sperling, E. A. Temperature-dependent hypoxia explains biogeography and severity of end-Permian marine mass extinction. Science 362, eaat1327 (2018).

    Google Scholar 

  • Benton, M. J. Hyperthermal-driven mass extinctions: killing models during the Permian–Triassic mass extinction. Phil. Trans. R. Soc. A 376, 20170076 (2018).

    Google Scholar 

  • Teskey, R. et al. Responses of tree species to heat waves and extreme heat events. Plant Cell Envir. 38, 1699–1712 (2015).

    Google Scholar 

  • Cai, Y. F., Zhang, H., Feng, Z. & Shen, S. Z. Intensive wildfire associated with volcanism promoted the vegetation changeover in southwest china during the Permian−Triassic transition. Front. Earth Sci. 9, 615841 (2021).

    Google Scholar 

  • Grasby, S. E. et al. Progressive environmental deterioration in northwestern Pangea leading to the latest Permian extinction. Bull. Geol. Soc. Am. 127, 1331–1347 (2015).

    Google Scholar 

  • Beauchamp, B. & Grasby, S. E. Permian lysocline shoaling and ocean acidification along NW Pangea led to carbonate eradication and chert expansion. Palaeogeogr. Palaeoclimatol. Palaeoecol. 350–352, 73–90 (2012).

    Google Scholar 

  • Wignall, P. B. & Twitchett, R. J. Oceanic anoxia and the end Permian mass extinction. Science 272, 1155–1158 (1996).

    Google Scholar 

  • Wignall, P. B. et al. Ultra-shallow-marine anoxia in an Early Triassic shallow-marine clastic ramp (Spitsbergen) and the suppression of benthic radiation. Geol. Mag. 153, 316–331 (2016).

    Google Scholar 

  • Proemse, B. C., Grasby, S. E., Wieser, M. E., Mayer, B. & Beauchamp, B. Molybdenum isotopic evidence for oxic marine conditions during the latest Permian extinction. Geology 41, 967–970 (2013).

    Google Scholar 

  • Grasby, S. E. et al. Transient Permian–Triassic euxinia in the southern Panthalassa deep ocean. Geology 49, 889–893 (2021).

    Google Scholar 

  • Wignall, P. B. et al. An 80 million year oceanic redox history from Permian to Jurassic pelagic sediments of the Mino-Tamba terrane, SW Japan, and the origin of four mass extinctions. Glob. Planet. Change 71, 109–123 (2010).

    Google Scholar 

  • Song, H. et al. Geochemical evidence from bio-apatite for multiple oceanic anoxic events during Permian–Triassic transition and the link with end-Permian extinction and recovery. Earth Planet. Sci. Lett. 353–354, 12–21 (2012).

    Google Scholar 

  • Grasby, S. E., Beauchamp, B., Embry, A. & Sanei, H. Recurrent Early Triassic ocean anoxia. Geology 41, 175–178 (2013).

    Google Scholar 

  • Takahashi, S., Yamasaki, S. I., Ogawa, K., Kaiho, K. & Tsuchiya, N. Redox conditions in the end-Early Triassic Panthalassa. Palaeogeogr. Palaeoclimato. Palaeoecol. 432, 15–28 (2015).

    Google Scholar 

  • Brennecka, G. A., Herrmann, A. D., Algeo, T. J. & Anbar, A. D. Rapid expansion of oceanic anoxia immediately before the end-Permian mass extinction. Proc. Natl Acad. Sci. USA 108, 17631–17634 (2011).

    Google Scholar 

  • Takahashi, S. et al. Bioessential element-depleted ocean following the euxinic maximum of the end-Permian mass extinction. Earth Planet. Sci. Lett 393, 94–104 (2014).

    Google Scholar 

  • Newton, R. J., Pevitt, E. L., Wignall, P. B. & Bottrell, S. H. Large shifts in the isotopic composition of seawater sulphate across the Permo–Triassic boundary in northern Italy. Earth Planet. Sci. Lett. 218, 331–345 (2004).

    Google Scholar 

  • Grice, K. et al. Photic zone euxinia during the Permian–Triassic superanoxic event. Science 307, 706–709 (2005).

    Google Scholar 

  • Ingall, E. & Jahnke, R. Evidence for enhanced phosphorus regeneration from marine sediments overlain by oxygen depleted waters. Geochim. Cosmochim. Acta 58, 2571–2575 (1994).

    Google Scholar 

  • Sun, Y. D. et al. Ammonium ocean following the end-Permian mass extinction. Earth Planet. Sci. Lett. 518, 211–222 (2019).

    Google Scholar 

  • Grasby, S. E., Beauchamp, B. & Knies, J. Early Triassic productivity crises delayed recovery from world’s worst mass extinction. Geology 44, 779–782 (2016).

    Google Scholar 

  • Schoepfer, S. D., Henderson, C. M., Garrison, G. H. & Ward, P. D. Cessation of a productive coastal upwelling system in the Panthalassic Ocean at the Permian–Triassic boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 313–314, 181–188 (2012).

    Google Scholar 

  • Schobben, M. et al. Flourishing ocean drives the end-Permian marine mass extinction. Proc. Natl Acad. Sci. USA 112, 10298–10303 (2015).

    Google Scholar 

  • Grasby, S. E. et al. Global warming leads to Early Triassic nutrient stress across northern Pangea. Bull. Geol. Soc. Am. 132, 943–954 (2020).

    Google Scholar 

  • Song, H. et al. Conodont calcium isotopic evidence for multiple shelf acidification events during the Early Triassic. Chem. Geol. 562, 120038 (2021).

    Google Scholar 

  • Jurikova, H. et al. Permian–Triassic mass extinction pulses driven by major marine carbon cycle perturbations. Nat. Geosci. 13, 745–750 (2020).

    Google Scholar 

  • Garbelli, C., Angiolini, L. & Shen, S. Z. Biomineralization and global change: a new perspective for understanding the end-Permian extinction. Geology 45, 19–22 (2017).

    Google Scholar 

  • Clarkson, M. O. et al. Ocean acidification and the Permo–Triassic mass extinction. Science 348, 229–232 (2015).

    Google Scholar 

  • Zhang, S. et al. Investigating controls on boron isotope ratios in shallow marine carbonates. Earth Planet. Sci. Lett. 458, 380–393 (2017).

    Google Scholar 

  • Hinojosa, J. L. et al. Evidence for end-Permian ocean acidification from calcium isotopes in biogenic apatite. Geology 40, 743–746 (2012).

    Google Scholar 

  • Komar, N. & Zeebe, R. E. Calcium and calcium isotope changes during carbon cycle perturbations at the end-Permian. Paleoceanography 31, 115–130 (2016).

    Google Scholar 

  • Silva-Tamayo, J. C. et al. Global perturbation of the marine calcium cycle during the Permian–Triassic transition. Bull. Geol. Soc. Am. 130, 1323–1338 (2018).

    Google Scholar 

  • Payne, J. L. et al. Calcium isotope constraints on the end-Permian mass extinction. Proc. Natl Acad. Sci. USA 107, 8543–8548 (2010).

    Google Scholar 

  • Lau, K. V. et al. The influence of seawater carbonate chemistry, mineralogy, and diagenesis on calcium isotope variations in Lower–Middle Triassic carbonate rocks. Chem. Geol. 471, 13–37 (2017).

    Google Scholar 

  • Wang, J. et al. Coupled δ44/40Ca, δ88/86Sr, and 87Sr/86Sr geochemistry across the end-Permian mass extinction event. Geochim. Cosmochim. Acta 262, 143–165 (2019).

    Google Scholar 

  • Kiessling, W. & Simpson, C. On the potential for ocean acidification to be a general cause of ancient reef crises. Glob. Change Biol. 17, 56–67 (2011).

    Google Scholar 

  • Chen, Z. Q., Kaiho, K. & George, A. D. Early Triassic recovery of the brachiopod faunas from the end-Permian mass extinction: a global review. Palaeogeogr. Palaeoclimatol. Palaeoecol. 224, 270–290 (2005).

    Google Scholar 

  • Dai, X., Korn, D. & Song, H. Morphological selectivity of the Permian–Triassic ammonoid mass extinction. Geology 49, 1112–1116 (2021).

    Google Scholar 

  • Fijałkowska-Mader, A. in Morphogenesis, Environmental Stress and Reverse Evolution (eds Guex, J., Torday, J. S. & Miller, W. B. Jr) 23–35 (Springer, 2020).

  • Beerling, D. J., Harfoot, M., Lomax, B. & Pyle, J. A. The stability of the stratospheric ozone layer during the end-Permian eruption of the Siberian Traps. Phil. Trans. R. Soc. A 365, 1843–1866 (2007).

    Google Scholar 

  • Svensen, H., Schmidbauer, N., Roscher, M., Stordal, F. & Planke, S. Contact metamorphism, halocarbons, and environmental crises of the past. Environ. Chem. 6, 466–471 (2009).

    Google Scholar 

  • Black, B. A., Lamarque, J. F., Shields, C. A., Elkins-Tanton, L. T. & Kiehl, J. T. Acid rain and ozone depletion from pulsed siberian traps magmatism. Geology 42, 67–70 (2014).

    Google Scholar 

  • Likens, G. E. & Butler, T. J. in Encyclopedia of the Anthropocene (eds Dellasala, D. A. & Goldstein, M. I.) 23–31 (Elsevier, 2018).

  • Sephton, M. A., Jiao, D., Engel, M. H., Looy, C. V. & Visscher, H. Terrestrial acidification during the end-Permian biosphere crisis? Geology 43, 159–162 (2015).

    Google Scholar 

  • Sheldon, N. D. Abrupt chemical weathering increase across the Permian–Triassic boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 231, 315–321 (2006).

    Google Scholar 

  • Maruoka, T., Koeberl, C., Hancox, P. J. & Reimold, W. U. Sulfur geochemistry across a terrestrial Permian–Triassic boundary section in the Karoo basin, South Africa. Earth Planet. Sci. Lett. 206, 101–117 (2003).

    Google Scholar 

  • Grasby, S. E., Them, T. R., Chen, Z., Yin, R. & Ardakani, O. H. Mercury as a proxy for volcanic emissions in the geologic record. Earth Sci. Rev. 196, 102880 (2019).

    Google Scholar 

  • Dal Corso, J. et al. Permo–Triassic boundary carbon and mercury cycling linked to terrestrial ecosystem collapse. Nat. Commun. 11, 2962 (2020).

    Google Scholar 

  • Rugenstein, M. A. A., Sedláček, J. & Knutti, R. Nonlinearities in patterns of long-term ocean warming. Geophys. Res. Lett. 43, 3380–3388 (2016).

    Google Scholar 

  • Yang, H. & Zhu, J. Equilibrium thermal response timescale of global oceans. Geophys. Res. Lett. 38, L14711 (2011).

    Google Scholar 

  • Song, H. et al. Anoxia/high temperature double whammy during the Permian–Triassic marine crisis and its aftermath. Sci. Rep. 4, 4132 (2014).

    Google Scholar 

  • Alroy, J. Accurate and precise estimates of origination and extinction rates. Paleobiology 40, 374–397 (2014).

    Google Scholar 

  • Scotese, C. R. Atlas of Permo-Triassic paleogeographic maps (Mollweide projection), maps 43–52, vol. 3/4 of the PALEOMAP Atlas. ResearchGate https://doi.org/10.13140/2.1.2609.9209 (2014).

  • Zhang, F. et al. Two distinct episodes of marine anoxia during the Permian–Triassic crisis evidenced by uranium isotopes in marine dolostones. Geochim. Cosmochim. Acta 287, 165–179 (2020).

    Google Scholar 

  • Wu, Y. et al. Six-fold increase of atmospheric pCO2 during the Permian–Triassic mass extinction. Nat. Commun. 12, 2137 (2021).

    Google Scholar 

  • Grossman, E. L. & Joachimski, M. M. Oxygen isotope stratigraphy. Geol. Time Scale 1, 279–307 (2020).

    Google Scholar 

  • Trotter, J. A., Williams, I. S., Barnes, C. R., Männik, P. & Simpson, A. New conodont δ18O records of Silurian climate change: implications for environmental and biological events. Palaeogeogr. Palaeoclimatol. Palaeoecol. 443, 34–48 (2016).

    Google Scholar 

  • Kaiho, K. et al. End-Permian catastrophe by a bolide impact: evidence of a gigantic release of sulfur from the mantle. Geology 29, 815–818 (2001).

    Google Scholar 

  • Chu, D. et al. Lilliput effect in freshwater ostracods during the Permian–Triassic extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 435, 38–52 (2015).

    Google Scholar 

  • Shen, J. et al. Mercury evidence of intense volcanic effects on land during the Permian–Triassic transition. Geology 47, 1117–1121 (2019).

    Google Scholar 

  • Cao, C., Wang, W., Liu, L., Shen, S. & Summons, R. E. Two episodes of 13C-depletion in organic carbon in the latest Permian: evidence from the terrestrial sequences in northern Xinjiang, China. Earth Planet. Sci. Lett. 270, 251–257 (2008).

    Google Scholar 

  • Shen, J. et al. Evidence for a prolonged Permian–Triassic extinction interval from global marine mercury records. Nat. Commun. 10, 1563 (2019).

    Google Scholar 

  • Wang, X. et al. Mercury anomalies across the end Permian mass extinction in south China from shallow and deep water depositional environments. Earth Planet Sci.Lett. 496, 159–167 (2018).

    Google Scholar 

  • Holser, W. T. et al. A unique geochemical record at the Permian/Triassic boundary. Nature 337, 39–44 (1989).

    Google Scholar 

  • Korte, C. & Kozur, H. W. Carbon-isotope stratigraphy across the Permian–Triassic boundary: a review. J. Asian Earth Sci. 39, 215–235 (2010).

    Google Scholar 

  • Luo, G. et al. Stepwise and large-magnitude negative shift in δ13Ccarb preceded the main marine mass extinction of the Permian–Triassic crisis interval. Palaeogeogr. Palaeoclimatol. Palaeoecol. 299, 70–82 (2011).

    Google Scholar 

  • Shen, S. Z. et al. High-resolution δ13Ccarb chemostratigraphy from latest Guadalupian through earliest Triassic in south China and Iran. Earth Planet. Sci. Lett. 375, 156–165 (2013).

    Google Scholar 

  • Hermann, E. et al. A close-up view of the Permian-Triassic boundary based on expanded organic carbon isotope records from Norway (Trøndelag and Finnmark platform). Glob. Planet. Change 74, 156–167 (2010).

    Google Scholar 

  • Luo, G. et al. Vertical δ13Corg gradients record changes in planktonic microbial community composition during the end-Permian mass extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 396, 119–131 (2014).

    Google Scholar 

  • Schneebeli-Hermann, E. et al. Evidence for atmospheric carbon injection during the end-Permian extinction. Geology 41, 579–582 (2013).

    Google Scholar 

  • Williams, M. L., Jones, B. G. & Carr, P. F. The interplay between massive volcanism and the local environment: geochemistry of the Late Permian mass extinction across the Sydney basin, Australia. Gondwana Res. 51, 149–169 (2017).

    Google Scholar 

  • Wu, Y. et al. Organic carbon isotopes in terrestrial Permian–Triassic boundary sections of North China: implications for global carbon cycle perturbations. Bull. Geol. Soc. Am. 132, 1106–1118 (2020).

    Google Scholar 

  • Grasby, S. E., Liu, X., Yin, R., Ernst, R. E. & Chen, Z. Toxic mercury pulses into late Permian terrestrial and marine environments. Geology 48, 830–833 (2020).

    Google Scholar 


  • Source: Ecology - nature.com

    Universal relation for life-span energy consumption in living organisms: Insights for the origin of aging

    New power sources