in

Ericaceous vegetation of the Bale Mountains of Ethiopia will prevail in the face of climate change

[adace-ad id="91168"]
  • 1.

    Colwell, R. K., Brehm, G., Cardelús, C. L., Gilman, A. C. & Longino, J. T. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322, 258–261 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 2.

    Jump, A. S., Matyas, C. & Penuelas, J. The altitude-for-latitude disparity in the range retractions of woody species. Trends Ecol. Evol. 24(12), 694–701. https://doi.org/10.1016/j.tree.2009.06.007 (2009).

    Article 
    PubMed 

    Google Scholar 

  • 3.

    Malcolm, J. R., Liu, C., Neilson, R. O., Hansen, A. & Hannah, L. Global warming and extinctions of endemic species from biodiversity hotspots. Conserv. Biol. 20(2), 538–548. https://doi.org/10.1111/j.1523-1739.2006.00364.x (2006).

    Article 
    PubMed 

    Google Scholar 

  • 4.

    Gentili, R. et al. Review: Potential warm stage microrefugia for alpine plants: Feedback between geomorphological and biological processes. Ecol. Complex. 21, 87–99. https://doi.org/10.1016/j.ecocom.2014.11.006 (2015).

    Article 

    Google Scholar 

  • 5.

    Malhi, Y. & Wright, J. Spatial patterns and recent trends in the climate of tropical rainforest regions. Trans. R. Soc. Lond. B. 359, 311–329. https://doi.org/10.1098/rstb.2003.1433Phil (2004).

    Article 

    Google Scholar 

  • 6.

    IPCC. In Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II, and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Core Writing Team (eds. Pachauri, R. K., Meyer, L. A.) 155 (IPCC, Geneva, 2014).

  • 7.

    Kreyling, J., Wana, D. & Beierkuhnlein, C. Climate warming and tropical plant species—consequence of the potential upslope shift of isotherms in southern Ethiopia. Divers. Distrib. 16, 593–605. https://doi.org/10.1111/j.1472-4642.2010.00675.x (2010).

    Article 

    Google Scholar 

  • 8.

    Beierkuhnlein, C. Biogeografie. Die räumliche Organisation des Lebens in einer sich verändernden Welt (Eugen Ulmer Verlag, 2007).

    Book 

    Google Scholar 

  • 9.

    Körner, C. The use of “altitude” for ecological research. Trends Ecol. Evol. 22(11), 569–574. https://doi.org/10.1016/j.tree.2007.09.006 (2007).

    Article 
    PubMed 

    Google Scholar 

  • 10.

    Messerli, B., and Ives, J.D. (1997). Mountains of the world: a global priority. edited by B. Messerli and J.D. Ives. Parthenon Pub. Group, New York. 495p.

  • 11.

    Flantua, S. G. A. et al. Snapshot isolation and isolation history challenge the analogy between mountains and islands used to understand endemism. Glob. Ecol. Biogeogr. 29, 1651–1673. https://doi.org/10.1111/geb.13155 (2020).

    Article 

    Google Scholar 

  • 12.

    Steinbauer, M. et al. Topography-driven isolation, speciation and a global increase of endemism with elevation. Glob. Ecol. Biogeogr. 25(9), 1097–1107. https://doi.org/10.1111/geb.12469 (2016).

    Article 

    Google Scholar 

  • 13.

    Testolin, R. et al. Global patterns and drivers of alpine plant species richness. Glob. Ecol. Biogeogr. 30, 1218–1231. https://doi.org/10.1111/geb.13297 (2021).

    Article 

    Google Scholar 

  • 14.

    Buytaert, W., Cuesta-Camacho, F. & Tobon, C. Potential impacts of climate change on the environmental services of humid tropical alpine regions. Glob. Ecol. Biogeogr. 20, 19–33. https://doi.org/10.1111/j.1466-8238.2010.00585.x (2011).

    Article 

    Google Scholar 

  • 15.

    Grabherr, G., Gottfried, M. & Pauli, H. Climate change impacts in alpine environments. Geogr. Compass 4, 1133–1153 (2010).

    Article 

    Google Scholar 

  • 16.

    Nagy, L. & Grabherr, G. The Biology of Alpine Habitats (Oxford University Press, 2009).

    Google Scholar 

  • 17.

    Razgour, O., Kasso, M., Santos, H. & Juste, J. Up in the air: Threats to Afromontane biodiversity from climate change and habitat loss revealed by genetic monitoring of the Ethiopian Highlands bat. Evol. Appl. 14, 794–806. https://doi.org/10.1111/eva.13161 (2021).

    Article 

    Google Scholar 

  • 18.

    Vuilleumier, F. & Monasterio, M. Introduction: high tropical Mountain Biota of the world. In High mountains tropical biogeography (eds Vuilleumier, F. & Monasterio, M.) (Oxford University Press, 1986).

    Google Scholar 

  • 19.

    Gehrke, B. & Linder, H. P. Species richness, endemism, and species composition in the tropical afroalpine flora. Alp. Bot. 124, 165–177 (2014).

    Article 

    Google Scholar 

  • 20.

    Hedberg, O. Features of afroalpine plant ecology. Acta Phytogeogr. Suec. 49, 1–144 (1964).

    Google Scholar 

  • 21.

    Hedberg, O. Vegetation belts of the East African mountains. Sven. Bot. Tidskr. 45, 140–202 (1951).

    Google Scholar 

  • 22.

    Hillman, J. C. The Bale Mountains National Park Area, Southeast Ethiopia and its management. Mt. Res. Dev. 8(2/3), 253–258 (1988).

    Article 

    Google Scholar 

  • 23.

    Miehe, S. & Miehe, G. Ericaceous Forests and Heathlands in the Bale Mountains of South Ethiopia .Ecology and Man’s Impact (Stiftung Walderhaltung in Africa, 1994).

    Google Scholar 

  • 24.

    Kidane, Y. O., Steinbauer, M. J. & Beierkuhnlein, C. Dead end for endemic plant species? A biodiversity hotspot under pressure. Glob. Ecol. Conserv. 19, 1–12. https://doi.org/10.1016/j.gecco.2019.e00670 (2019).

    Article 

    Google Scholar 

  • 25.

    McGuire, A. F., Kathleen, A. & Kron, K. A. Phylogenetic relationships of European and African Ericas. Int. J. Plant Sci. 162(2), 311–318. https://doi.org/10.1086/427478 (2005).

    Article 

    Google Scholar 

  • 26.

    Wesche, K. The importance of occasional droughts for afroalpine landscape ecology. J. Trop. Ecol. 19, 197–208. https://doi.org/10.1017/S0266467403003225 (2003).

    Article 

    Google Scholar 

  • 27.

    Gil-Romera, G. et al. Long-term fire resilience of the Ericaceous Belt, Bale Mountains, Ethiopia. Biol. Lett. 15, 20190357. https://doi.org/10.1098/rsbl.2019.0357 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Gizaw, A. et al. Phylogeography of the heathers Erica arborea and E. trimera in the afro-alpine “sky islands” inferred from AFLPs and plastid DNA sequences. Flora 208, 453–463 (2013).

    Article 

    Google Scholar 

  • 29.

    Johansson, M. Fire and Grazing in Subalpine Heathlands and Forests of Bale Mountains, Ethiopia (Swedish University of Agricultural Sciences, 2013).

    Google Scholar 

  • 30.

    Johansson, M. U., Frisk, C. A., Nemomissa, S. & Hylander, K. Disturbance from traditional fire management in subalpine heathlands increases Afro-alpine plant resilience to climate change. Glob. Change Biol. 24(7), 2952–2964. https://doi.org/10.1111/gcb.14121 (2018).

    ADS 
    Article 

    Google Scholar 

  • 31.

    Wesche, K., Miehe, G. & Kaeppeli, M. The significance of fire for afroalpine ericaceous vegetation. Mt. Res. Dev. 20, 340–347. https://doi.org/10.1659/0276-4741(2000)020[0340:TSOFFA]2.0.CO;2 (2000).

    Article 

    Google Scholar 

  • 32.

    Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573. https://doi.org/10.1126/science.aaa4984 (2015).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 33.

    Warren, R. et al. Quantifying the benefit of early climate change mitigation in avoiding biodiversity loss. Nat. Clim. Change 3, 678–682. https://doi.org/10.1038/NCLIMATE1887 (2013).

    ADS 
    Article 

    Google Scholar 

  • 34.

    Hillman, J. C. Conservation in Ethiopia’s Bale Mountains. Endanger. Species 3, 1–4 (1986).

    Google Scholar 

  • 35.

    Johansson, M. U. & Granström, A. Fuel, fire, and cattle in African highlands: traditional management maintains a mosaic heathland landscape. J. Appl. Ecol. 51, 1396–1405. https://doi.org/10.1111/1365-2664.12291 (2014).

    Article 

    Google Scholar 

  • 36.

    Ossendorf, G. et al. Middle Stone Age foragers resided in high elevations of the glaciated Bale Mountains, Ethiopia. Science 365(6453), 583–587. https://doi.org/10.1126/science.aaw8942 (2019).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 37.

    Uhlig, S. & Uhlig, K. Mountain chronicles. Studies on the altitudinal zonation of forests and alpine plants in the Central Bale Mountains, Ethiopia. Mt. Res. Dev. 11, 153–256 (1991).

    Article 

    Google Scholar 

  • 38.

    Umer, M. et al. Late Pleistocene Holocene vegetation history of the Bale Mountains, Ethiopia. Quatern. Sci. Rev. 26, 2229–2246 (2007).

    ADS 
    Article 

    Google Scholar 

  • 39.

    Wesche, K. et al. Recruitment of trees at tropical alpine treelines: Erica in Africa versus Polylepis in South America. Plant Ecol. Divers. 1, 35–46. https://doi.org/10.1080/17550870802262166 (2008).

    Article 

    Google Scholar 

  • 40.

    Di Falco, S., Veronesi, M. & Yesuf, M. Does adaptation to climate change provide food security? A micro-perspective from Ethiopia. Am. J. Agric. Econ. 93(3), 829–846. https://doi.org/10.1093/ajae/aar006 (2011).

    Article 

    Google Scholar 

  • 41.

    Nsengiyumva, P. African mountains in a changing climate: trends, impacts, and adaptation solutions. Mt. Res. Dev. 39(2), 1–8. https://doi.org/10.1659/MRD-JOURNAL-D-19-00062.1 (2019).

    Article 

    Google Scholar 

  • 42.

    IPCC. Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty (eds. Masson-Delmotte, V. et al.) (2018).

  • 43.

    Araújo, M. B. & Guisan, A. Five (or so) challenges for species distribution modeling. J. Biogeogr. 33(10), 1677–1688. https://doi.org/10.1111/j.1365-2699.2006.01584.x (2006).

    Article 

    Google Scholar 

  • 44.

    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high-resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Article 

    Google Scholar 

  • 45.

    Bonnefille, R. Evidence for a cooler and drier climate in the Ethiopian uplands towards 2.5 Myr ago. Nature 303, 487–491. https://doi.org/10.1038/303487a0 (1983).

    ADS 
    Article 

    Google Scholar 

  • 46.

    Bonnefille, R., Roeland, J. C. & Guiot, J. Temperature and rainfall estimate for the past 40,000 years in equatorial Africa. Nature 346, 347–349 (1990).

    ADS 
    Article 

    Google Scholar 

  • 47.

    Gottelli, D., Marino, J., Sillero-Zubiri, C. & Funk, S. M. The effect of the last glacial age on speciation and population genetic structure of the endangered Ethiopian wolf (Canis simensis). Mol. Ecol. 13, 2275–2286 (2004).

    CAS 
    Article 

    Google Scholar 

  • 48.

    Smith, A. P. & Young, T. P. Tropical alpine plant ecology. Annu. Rev. Ecol. Syst. 18, 137–158 (1987).

    Article 

    Google Scholar 

  • 49.

    Kidane, Y. O., Stahlman, R. & Beierkuhnlein, C. Vegetation dynamics, and land use and land cover change in the Bale Mountains, Ethiopia. Environ. Monit. Assess. 184(12), 7473–7489. https://doi.org/10.1007/S10661-011-2514-8 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 50.

    Hedberg, O. Origins of the afroalpine Flora. In High Mountains Tropical Biogeography (eds Vuilleumier, F. & Monasterio, M.) (Oxford University Press, 1986) (Published by Oxford University Press and the American Museum of Natural History).

    Google Scholar 

  • 51.

    United Nations Framework Convention on Climate Change (UNFCCC). The Paris Agreement. https://unfccc.int/files/meetings/paris_nov_2015/application/pdf/paris_agreement_english_.pdf (2015). Accessed November 19, 2021.

  • 52.

    QGIS Development Team. QGIS Geographic Information System. Open-Source Geospatial Foundation Project. http://qgis.osgeo.org (2018).

  • 53.

    Foody, G. M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 80(1), 185–201. https://doi.org/10.1016/S0034-4257(01)00295-4 (2002).

    ADS 
    Article 

    Google Scholar 

  • 54.

    Wegmann, M., Leutner, B. & Dech, S. Remote Sensing and GIS for Ecologists: Using Open Software 333 (Pelagic Publishing, UK, 2016).

    Google Scholar 

  • 55.

    Duveiller, G., Defourny, P., Descle’e, B. & Mayaux, P. Deforestation in Central Africa: Estimates at regional, national, and landscape levels by advanced processing of systematically distributed Landsat extracts. Remote Sens. Environ. 112(5), 1969–1981. https://doi.org/10.1016/j.rse.2007.07.026 (2008).

    ADS 
    Article 

    Google Scholar 

  • 56.

    Smeeton, N. C. Early history of the kappa statistic. Biometrics 41(3), 795–795 (1985).

    Google Scholar 

  • 57.

    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing [Internet]. http://www.R-project.org/ (2019).

  • 58.

    Naimi, B. & Araújo, M. B. SDM: a reproducible and extensible R platform for species distribution modeling. Ecography 39, 368–375. https://doi.org/10.1111/ecog.01881 (2016).

    Article 

    Google Scholar 

  • 59.

    Naimi, B., Hamm, N. A. S., Groen, T. A., Skidmore, A. K. & Toxopeus, A. G. Where is positional uncertainty a problem for species distribution modeling? Ecography 37(2), 191–203 (2014).

    Article 

    Google Scholar 

  • 60.

    Austin, M. P. Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecol. Model. 157, 101–118 (2002).

    Article 

    Google Scholar 

  • 61.

    World Climate Research Program (WCRP). Coupled Model Intercomparison Project 5 (CMIP5). https://esgf-node.llnl.gov/projects/cmip5 (2021).

  • 62.

    Hijmans, R. J., & Elith, J. Species distribution modelling with R. https://cran.r-project.org/web/packages/dismo/vignettes/sdm.pdf (2017). Accessed July 2018.

  • 63.

    Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 77, 802–881 (2009).

    Article 

    Google Scholar 

  • 64.

    Hijmans, R. J. & van Etten, J. Raster: Geographic Analysis and Modelling with Raster Data. R package version 1.8-39. http://CRAN.R-project.org/package=raster (2011). Accessed July 2018.

  • 65.

    Elith, J. et al. Novel methods improve prediction of “species” distributions from occurrence data. Ecography 29, 129–151 (2006).

    Article 

    Google Scholar 

  • 66.

    Booth, T. H., Nix, H. A., Busby, J. R. & Hutchinson, M. F. BIOCLIM: the first species distribution modelling package, its early applications and relevance to most current MAXENT studies. Divers. Distrib. 20, 1–9. https://doi.org/10.1111/ddi.12144 (2014).

    Article 

    Google Scholar 

  • 67.

    Carpenter, G., Gillison, A. N. & Winter, J. Domain: a flexible modelling procedure for mapping potential distributions of plants and animals. Biodivers. Conserv. 2, 667–680 (1993).

    Article 

    Google Scholar 

  • 68.

    Vapnik, V. Statistical Learning Theory (Wiley, 1998).

    MATH 

    Google Scholar 

  • 69.

    Mateo, R. G., Felicísimo, Á. M., Pottier, J., Guisan, A. & Muñoz, J. Do stacked species distribution models reflect altitudinal diversity patterns?. PloS ONE 7(3), e32586. https://doi.org/10.1371/journal.pone.0032586 (2012).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 70.

    Thuiller, W. BIOMOD—optimizing predictions of species distributions and projecting potential future shifts under global change. Glob. Change Biol. 9, 1353–1362 (2003).

    ADS 
    Article 

    Google Scholar 

  • 71.

    Peterson, A. T. et al. Ecological Niches and Geographic Distributions. Monographs in Population Biology-49 (Princeton University Press, 2011).

    Book 

    Google Scholar 

  • 72.

    Steinbauer, M. J. et al. Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 556, 231–234 https://doi.org/10.1038/s41586-018-0005-6 (2018).

    Article 
    PubMed 

    Google Scholar 

  • 73.

    Chala, D., Niklaus, E., Zimmermann, E. Z., Brochmann, C. & Bakkestuen, V. Migration corridors for alpine plants among the “sky islands” of eastern Africa: do they, or did they exist?. Alp. Bot. 127, 133–144. https://doi.org/10.1007/s00035-017-0184-z (2017).

    Article 

    Google Scholar 

  • 74.

    Körner, C. & Hiltbrunner, E. Why is the alpine flora comparatively robust against climatic warming? Diversity 13, 383. https://doi.org/10.3390/d13080383 (2021).

    Article 

    Google Scholar 

  • 75.

    Winkler, M. et al. The rich sides of mountain summit a pan-European view on aspect preferences of alpine plants. J. Biogeogr. 43(11), 2261–2273. https://doi.org/10.1111/Jbi.12835 (2016).

    Article 

    Google Scholar 

  • 76.

    United States Geological Survey (USGS). Landsat Archive. Landsat standard data products. http://landsat.usgs.gov (2018). Accessed July 17, 2018.

  • 77.

    Di Falco, S., Yesuf, M., Kohlin, G. & Ringler, C. Estimating the impact of climate change on agriculture in low-income countries: household level evidence from the Nile Basin, Ethiopia. Environ. Resour. Econ. 52, 457–478. https://doi.org/10.1007/s10640-011-9538-y (2011).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Reducing methane emissions at landfills

    Students dive into research with the MIT Climate and Sustainability Consortium