in

Individual and joint estimation of humpback whale migratory patterns and their environmental drivers in the Southwest Atlantic Ocean

[adace-ad id="91168"]
  • Mackintosh NA. The southern stocks of whalebone whales 1942.

  • Perrin, W. F. & Wursig, B. Thewissen JGM “Hans” (Academic Press, 2009).

    Google Scholar 

  • Rizzo, L. Y. & Schulte, D. A review of humpback whales’ migration patterns worldwide and their consequences to gene flow. J. Mar. Biol. Assoc. U.K. 89, 995–1002. https://doi.org/10.1017/S0025315409000332 (2009).

    Article 

    Google Scholar 

  • Baker, C. S. et al. Strong maternal fidelity and natal philopatry shape genetic structure in North Pacific humpback whales. Mar. Ecol. Prog. Ser. 494, 291–306. https://doi.org/10.3354/meps10508 (2013).

    ADS 
    Article 

    Google Scholar 

  • Clapham, P. J. et al. Seasonal occurrence and annual return of humpback whales, Megaptera novaeangliae, in the southern Gulf of Maine. Can J Zool 71, 440–443. https://doi.org/10.1139/z93-063 (1993).

    Article 

    Google Scholar 

  • Dawbin, W. H. The seasonal migratory cycle of humpback whales. Whales Dolphins Porpoises 4, 145–70 (1966).

    Article 

    Google Scholar 

  • Horton, T. W., Zerbini, A. N., Andriolo, A., Danilewicz, D. & Sucunza, F. Multi-decadal humpback whale migratory route fidelity despite oceanographic and geomagnetic change. Front. Mar. Sci. https://doi.org/10.3389/fmars.2020.00414 (2020).

    Article 

    Google Scholar 

  • Larsen, A. H., Sigurjónsson, J., Oien, N., Vikingsson, G. & Palsbøll, P. Populations genetic analysis of nuclear and mitochondrial loci in skin biopsies collected from central and northeastern North Atlantic humpback whales (Megaptera novaeangliae): Population identity and migratory destinations. Proc. Biol. Sci. 263, 1611–1618. https://doi.org/10.1098/rspb.1996.0236 (1996).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Palsbøll, P. J. et al. Genetic tagging of humpback whales. Nature 388, 767–9. https://doi.org/10.1038/42005 (1997).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • Barendse, J. et al. Migration redefined? Seasonality, movements and group composition of humpback whales Megaptera novaeangliae off the west coast of South Africa. Afr. J. Mar. Sci. 32, 1–22. https://doi.org/10.2989/18142321003714203 (2010).

    Article 

    Google Scholar 

  • Best, B. P., Sekiguchi, K. & Findlay, P. K. A suspended migration of humpback whales Megaptera novaeangliae on the west coast of South Africa. Mar. Ecol. Prog. Ser. 118, 1–12. https://doi.org/10.3354/meps118001 (1995).

    ADS 
    Article 

    Google Scholar 

  • Brown, M. R., Corkeron, P. J., Hale, P. T., Schultz, K. W. & Bryden, M. M. Evidence for a sex-segregated migration in the humpback whale (Megaptera novaeangliae). Proc. R. Soc. Lond. B 259, 229–234. https://doi.org/10.1098/rspb.1995.0034 (1995).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Christensen, I., Haug, T. & Øien, N. Seasonal distribution, exploitation and present abundance of stocks of large baleen whales (Mysticeti) and sperm whales (Physeter macrocephalus) in Norwegian and adjacent waters. ICES J. Mar. Sci. 49, 341–355. https://doi.org/10.1093/icesjms/49.3.341 (1992).

    Article 

    Google Scholar 

  • Corkeron, P. J. & Connor, R. C. Why do baleen whales migrate?1. Mar. Mamm. Sci. 15, 1228–1245. https://doi.org/10.1111/j.1748-7692.1999.tb00887.x (1999).

    Article 

    Google Scholar 

  • Pomilla, C. & Rosenbaum, H. C. Against the current: An inter-oceanic whale migration event. Biol. Lett. 1, 476–479. https://doi.org/10.1098/rsbl.2005.0351 (2005).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Druskat, A., Ghosh, R., Castrillon, J. & Bengtson Nash, S. M. Sex ratios of migrating southern hemisphere humpback whales: A new sentinel parameter of ecosystem health. Mar. Environ. Res. 151, 104749. https://doi.org/10.1016/j.marenvres.2019.104749 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Atkinson, A. et al. Krill (Euphausia superba) distribution contracts southward during rapid regional warming. Nat. Clim. Chang. 9, 142–147. https://doi.org/10.1038/s41558-018-0370-z (2019).

    ADS 
    Article 

    Google Scholar 

  • Atkinson, A., Siegel, V., Pakhomov, E. & Rothery, P. Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature 432, 100–103. https://doi.org/10.1038/nature02996 (2004).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Flores, H. et al. Impact of climate change on Antarctic krill. Mar. Ecol. Prog. Ser. 458, 1–19. https://doi.org/10.3354/meps09831 (2012).

    ADS 
    Article 

    Google Scholar 

  • Andrews-Goff, V. et al. Humpback whale migrations to Antarctic summer foraging grounds through the southwest Pacific Ocean. Sci. Rep. 8, 12333. https://doi.org/10.1038/s41598-018-30748-4 (2018).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Garrigue, C., Clapham, P. J., Geyer, Y., Kennedy, A. S. & Zerbini, A. N. Satellite tracking reveals novel migratory patterns and the importance of seamounts for endangered South Pacific humpback whales. R. Soc. Open Sci. 2, 150489. https://doi.org/10.1098/rsos.150489 (2015).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Riekkola, L., Andrews-Goff, V., Friedlaender, A., Constantine, R. & Zerbini, A. N. Environmental drivers of humpback whale foraging behavior in the remote Southern Ocean. J. Exp. Mar. Biol. Ecol. 517, 1–12. https://doi.org/10.1016/j.jembe.2019.05.008 (2019).

    Article 

    Google Scholar 

  • Fleming, A. H., Clark, C. T., Calambokidis, J. & Barlow, J. Humpback whale diets respond to variance in ocean climate and ecosystem conditions in the California Current. Glob. Change Biol. 22, 1214–1224. https://doi.org/10.1111/gcb.13171 (2016).

    ADS 
    Article 

    Google Scholar 

  • Nash, S. M. B. et al. Signals from the south; humpback whales carry messages of Antarctic sea-ice ecosystem variability. Glob. Change Biol. 24, 1500–1510. https://doi.org/10.1111/gcb.14035 (2018).

    ADS 
    Article 

    Google Scholar 

  • Cartwright, R. et al. Fluctuating reproductive rates in Hawaii’s humpback whales, Megaptera novaeangliae, reflect recent climate anomalies in the North Pacific. R. Soc. Open Sci. 6, 181463. https://doi.org/10.1098/rsos.181463 (2019).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tulloch, V. J. D., Plagányi, É. E., Matear, R., Brown, C. J. & Richardson, A. J. Ecosystem modelling to quantify the impact of historical whaling on Southern Hemisphere baleen whales. Fish Fish. 19, 117–137. https://doi.org/10.1111/faf.12241 (2018).

    Article 

    Google Scholar 

  • Jonsen, I. D., Flemming, J. M. & Myers, R. A. Robust state–space modeling of animal movement data. Ecology 86, 2874–2880. https://doi.org/10.1890/04-1852 (2005).

    Article 

    Google Scholar 

  • Morales, J. M., Haydon, D. T., Frair, J., Holsinger, K. E. & Fryxell, J. M. Extracting more out of relocation data: Building movement models as mixtures of random walks. Ecology 85, 2436–2445. https://doi.org/10.1890/03-0269 (2004).

    Article 

    Google Scholar 

  • Patterson, T. A., Thomas, L., Wilcox, C., Ovaskainen, O. & Matthiopoulos, J. State–space models of individual animal movement. Trends Ecol. Evol. 23, 87–94. https://doi.org/10.1016/j.tree.2007.10.009 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Jonsen, I. Joint estimation over multiple individuals improves behavioural state inference from animal movement data. Sci. Rep. https://doi.org/10.1038/srep20625 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mills Flemming, J., Jonsen, I. D., Myers, R. A. & Field, C. A. Hierarchical state-space estimation of leatherback turtle navigation ability. PLoS ONE 5, e14245. https://doi.org/10.1371/journal.pone.0014245 (2010).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Andriolo, A., Kinas, P. G., Engel, M. H., Martins, C. C. A. & Rufino, A. M. Humpback whales within the Brazilian breeding ground: Distribution and population size estimate. Endanger. Species Res. 11, 233–243. https://doi.org/10.3354/esr00282 (2010).

    Article 

    Google Scholar 

  • Ward, E., Zerbini, A. N., Kinas, P. G., Engel, M. H. & Andriolo, A. Estimates of population growth rates of humpback whales (Megaptera novaeangliae) in the wintering grounds off the coast of Brazil (Breeding Stock A). J Cetacean Res. Manag. 3, 145–149 (2011).

    Google Scholar 

  • Zerbini, A. N. et al. Assessing the recovery of an Antarctic predator from historical exploitation. R. Soc. Open Sci. 6, 190368. https://doi.org/10.1098/rsos.190368 (2019).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bortolotto, G. A., Danilewicz, D., Hammond, P. S., Thomas, L. & Zerbini, A. N. Whale distribution in a breeding area: Spatial models of habitat use and abundance of western South Atlantic humpback whales. Mar. Ecol. Prog. Ser. 585, 213–227. https://doi.org/10.3354/meps12393 (2017).

    ADS 
    Article 

    Google Scholar 

  • Martins, C. C. A., Andriolo, A., Engel, M. H., Kinas, P. G. & Saito, C. H. Identifying priority areas for humpback whale conservation at Eastern Brazilian Coast. Ocean Coast. Manag. 75, 63–71. https://doi.org/10.1016/j.ocecoaman.2013.02.006 (2013).

    Article 

    Google Scholar 

  • Albertson, G. R. et al. Temporal stability and mixed-stock analyses of humpback whales (Megaptera novaeangliae) in the nearshore waters of the Western Antarctic Peninsula. Polar Biol. 41, 323–340. https://doi.org/10.1007/s00300-017-2193-1 (2018).

    Article 

    Google Scholar 

  • Engel, M. & Martin, A. Feeding grounds of the western South Atlantic humpback whale population. Mar. Mamm. Sci. 25, 964–969 (2009).

    Article 

    Google Scholar 

  • Engel, M. H. et al. Mitochondrial DNA diversity of the Southwestern Atlantic humpback whale (Megaptera novaeangliae) breeding area off Brazil, and the potential connections to Antarctic feeding areas. Conserv. Genet. 5, 1253–1262. https://doi.org/10.1007/s10592-007-9453-5 (2008).

    CAS 
    Article 

    Google Scholar 

  • Stevick, P., De Godoy, L. P., McOsker, M., Engel, M. & Allen, J. A note on the movement of a humpback whale from Abrolhos Bank, Brazil to South Georgia. J. Cetac. Res. Manag. 8, 297 (2006).

    Google Scholar 

  • Zerbini, A. N. et al. Migration and summer destinations of humpback whales (Megaptera novaeangliae) in the western South Atlantic Ocean. J. Cetacean Res. Manag. 3, 113–8 (2011).

    Google Scholar 

  • Zerbini, A. N. et al. Satellite-monitored movements of humpback whales Megaptera novaeangliae in the Southwest Atlantic Ocean. Mar. Ecol. Prog. Ser. 313, 295–304. https://doi.org/10.3354/meps313295 (2006).

    ADS 
    Article 

    Google Scholar 

  • de Castro, F. R. et al. Are marine protected areas and priority areas for conservation representative of humpback whale breeding habitats in the western South Atlantic?. Biol. Conserv. 179, 106–114. https://doi.org/10.1016/j.biocon.2014.09.013 (2014).

    Article 

    Google Scholar 

  • Heide-Jørgensen, M. P., Kleivane, L., OIen, N., Laidre, K. L. & Jensen, M. V. A new technique for deploying Sa℡lite transmitters on baleen whales: Tracking a blue whale (balaenoptera Musculus) in the North Atlantic. Mar. Mamm. Sci. 17, 949–54. https://doi.org/10.1111/j.1748-7692.2001.tb01309.x (2011).

    Article 

    Google Scholar 

  • Heide-Jørgensen, M. P. et al. From greenland to Canada in ten days: Tracks of bowhead whales, Balaena mysticetus, across Baffin Bay. Arctic 56, 21–31 (2003).

    Article 

    Google Scholar 

  • Heide-Jørgensen, M. P., Laidre, K. L., Jensen, M. V., Dueck, L. & Postma, L. D. Dissolving stock discreteness with Sa℡lite tracking: Bowhead whales in Baffin Bay. Mar. Mamm. Sci. 22, 34–45. https://doi.org/10.1111/j.1748-7692.2006.00004.x (2006).

    Article 

    Google Scholar 

  • Zerbini, A. N., Fernandez, A. A., Andriolo, A., Clapham, P. J., Crespo, E., Gonzalez, R., et al. Satellite tracking of southern right whales (Eubalaena australis) from Golfo San Matias, Rio Negro Province, Argentina. Scientific Committee of the International Whaling Commission SC67b, Bled, Slovenia (2018).

  • Chittleborough, R. G. Dynamics of two populations of the humpback whale, Megaptera novaeangliae (Borowski). Mar. Freshwater Res. 16, 33–128. https://doi.org/10.1071/mf9650033 (1965).

    Article 

    Google Scholar 

  • Freitas, C., Lydersen, C., Fedak, M. A. & Kovacs, K. M. A simple new algorithm to filter marine mammal Argos locations. Mar. Mamm. Sci. 24, 315–325. https://doi.org/10.1111/j.1748-7692.2007.00180.x (2008).

    Article 

    Google Scholar 

  • Lambertsen, R. H. A biopsy system for large whales and its use for cytogenetics. J. Mamm. 68, 443–445. https://doi.org/10.2307/1381495 (1987).

    Article 

    Google Scholar 

  • Mendelssohn, R. rerddapXtracto: Extracts Environmental Data from “ERDDAP” Web Services. (2020).

  • Chin, T. M., Milliff, R. F. & Large, W. G. Basin-scale, high-wavenumber sea surface wind fields from a multiresolution analysis of scatterometer data. J. Atmos. Oceanic Technol. 15, 741–763. https://doi.org/10.1175/1520-0426(1998)015%3c0741:BSHWSS%3e2.0.CO;2 (1998).

    ADS 
    Article 

    Google Scholar 

  • Orsi, A. H., Whitworth, T. & Nowlin, W. D. On the meridional extent and fronts of the antarctic circumpolar current. Deep Sea Res. Part I 42, 641–673. https://doi.org/10.1016/0967-0637(95)00021-W (1995).

    Article 

    Google Scholar 

  • Johnson, D. S., London, J. M., Lea, M.-A. & Durban, J. W. Continuous-time correlated random walk model for animal telemetry data. Ecology 89, 1208–1215. https://doi.org/10.1890/07-1032.1 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Bedriñana-Romano, L. et al. Defining priority areas for blue whale conservation and investigating overlap with vessel traffic in Chilean Patagonia, using a fast-fitting movement model. Sci. Rep. 11, 2709. https://doi.org/10.1038/s41598-021-82220-5 (2021).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McClintock, B. T., London, J. M., Cameron, M. F. & Boveng, P. L. Modelling animal movement using the Argos satellite telemetry location error ellipse. Methods Ecol. Evol. 6, 266–277. https://doi.org/10.1111/2041-210X.12311 (2015).

    Article 

    Google Scholar 

  • Akaike, H. Theory and an Extension of the Maximum Likelihood Principal. International Symposium on Information Theory (Akademiai Kaiado, 1973).

    MATH 

    Google Scholar 

  • Auger-Méthé, M. et al. Spatiotemporal modelling of marine movement data using Template Model Builder (TMB). Mar. Ecol. Prog. Ser. 565, 237–249. https://doi.org/10.3354/meps12019 (2017).

    ADS 
    Article 

    Google Scholar 

  • Jonsen, I. D. et al. Movement responses to environment: Fast inference of variation among southern elephant seals with a mixed effects model. Ecology 100, e02566. https://doi.org/10.1002/ecy.2566 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Kristensen, K., Nielsen, A., Berg, C. W., Skaug, H. & Bell, B. TMB: Automatic differentiation and laplace approximation. J. Stat. Softw. https://doi.org/10.18637/jss.v070.i05 (2016).

    Article 

    Google Scholar 

  • Marcondes, M. C. C. et al. The Southern Ocean Exchange: Porous boundaries between humpback whale breeding populations in southern polar waters. Sci. Rep. 11, 23618. https://doi.org/10.1038/s41598-021-02612-5 (2021).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Derville, S., Torres, L. G., Zerbini, A. N., Oremus, M. & Garrigue, C. Horizontal and vertical movements of humpback whales inform the use of critical pelagic habitats in the western South Pacific. Sci. Rep. 10, 4871. https://doi.org/10.1038/s41598-020-61771-z (2020).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Noad, M. J. & Cato, D. H. Swimming speeds of singing and non-singing humpback whales during migration. Mar. Mamm. Sci. 23, 481–495. https://doi.org/10.1111/j.1748-7692.2007.02414.x (2007).

    Article 

    Google Scholar 

  • Gabriele, C. M. et al. Estimating the mortality rate of humpback whale calves in the central North Pacific Ocean. Can. J. Zool. 79, 589–600. https://doi.org/10.1139/z01-014 (2001).

    Article 

    Google Scholar 

  • Korb, R. E., Whitehouse, M. J., Atkinson, A. & Thorpe, S. E. Magnitude and maintenance of the phytoplankton bloom at South Georgia: A naturally iron-replete environment. Mar. Ecol. Progress Ser. 368, 75–91 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Korb, R. E., Whitehouse, M. J. & Ward, P. SeaWiFS in the southern ocean: Spatial and temporal variability in phytoplankton biomass around South Georgia. Deep Sea Res. Part II 51, 99–116. https://doi.org/10.1016/j.dsr2.2003.04.002 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Atkinson, A. et al. Oceanic circumpolar habitats of Antarctic krill. Mar. Ecol. Prog. Ser. 362, 1–23. https://doi.org/10.3354/meps07498 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Murphy, E. J. et al. Southern antarctic circumpolar current front to the northeast of South Georgia: Horizontal advection of krill and its role in the ecosystem. J. Geophys. Res. Oceans https://doi.org/10.1029/2002JC001522 (2004).

    Article 

    Google Scholar 

  • Schmidt, K., Atkinson, A., Pond, D. W. & Ireland, L. C. Feeding and overwintering of Antarctic krill across its major habitats: The role of sea ice cover, water depth, and phytoplankton abundance. Limnol. Oceanogr. 59, 17–36. https://doi.org/10.4319/lo.2014.59.1.0017 (2014).

    ADS 
    Article 

    Google Scholar 

  • Trathan, P. N. et al. Oceanographic variability and changes in Antarctic krill (Euphausia superba) abundance at South Georgia. Fish. Oceanogr. 12, 569–583. https://doi.org/10.1046/j.1365-2419.2003.00268.x (2003).

    Article 

    Google Scholar 

  • Venables, H. J. & Meredith, M. P. Theory and observations of Ekman flux in the chlorophyll distribution downstream of South Georgia. Geophys. Res. Lett. https://doi.org/10.1029/2009GL041371 (2009).

    Article 

    Google Scholar 

  • Krafft, B. A. et al. Distribution and demography of Antarctic krill in the Southeast Atlantic sector of the Southern Ocean during the austral summer 2008. Polar Biol. 33, 957–968. https://doi.org/10.1007/s00300-010-0774-3 (2010).

    Article 

    Google Scholar 

  • Murphy, E. J. et al. Spatial and temporal operation of the Scotia Sea ecosystem: A review of large-scale links in a krill centred food web. Philos. Trans. R. Soc. B Biol. Sci. 362, 113–48. https://doi.org/10.1098/rstb.2006.1957 (2007).

    CAS 
    Article 

    Google Scholar 

  • Thorpe, S. E., Murphy, E. J. & Watkins, J. L. Circumpolar connections between Antarctic krill (Euphausia superba Dana) populations: Investigating the roles of ocean and sea ice transport. Deep Sea Res. Part I 54, 792–810. https://doi.org/10.1016/j.dsr.2007.01.008 (2007).

    Article 

    Google Scholar 

  • Mori, M. et al. Modelling dispersal of juvenile krill released from the Antarctic ice edge: Ecosystem implications of ocean movement. J. Mar. Syst. 189, 50–61. https://doi.org/10.1016/j.jmarsys.2018.09.005 (2019).

    Article 

    Google Scholar 

  • Kohlbach, D. et al. Ice algae-produced carbon is critical for overwintering of antarctic krill Euphausia superba. Front. Mar. Sci. https://doi.org/10.3389/fmars.2017.00310 (2017).

    Article 

    Google Scholar 

  • Meyer, B. et al. The winter pack-ice zone provides a sheltered but food-poor habitat for larval Antarctic krill. Nat. Ecol. Evol. 1, 1853–1861. https://doi.org/10.1038/s41559-017-0368-3 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Meyer, B. et al. Physiology, growth, and development of larval krill Euphausia superba in autumn and winter in the Lazarev Sea, Antarctica. Limnol. Oceanogr. 54, 1595–1614. https://doi.org/10.4319/lo.2009.54.5.1595 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Lancelot, C. et al. Spatial distribution of the iron supply to phytoplankton in the Southern Ocean: A model study. Biogeosciences 6, 2861–2878. https://doi.org/10.5194/bg-6-2861-2009 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Brierley, A. S. et al. Antarctic krill under Sea Ice: Elevated abundance in a narrow band just south of Ice Edge. Science 295, 1890–1892. https://doi.org/10.1126/science.1068574 (2002).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Schmidt, K., Atkinson, A., Venables, H. J. & Pond, D. W. Early spawning of Antarctic krill in the Scotia Sea is fuelled by “superfluous” feeding on non-ice associated phytoplankton blooms. Deep Sea Res. Part II 59–60, 159–172. https://doi.org/10.1016/j.dsr2.2011.05.002 (2012).

    ADS 
    Article 

    Google Scholar 

  • Walsh, J., Reiss, C. S. & Watters, G. M. Flexibility in Antarctic krill Euphausia superba decouples diet and recruitment from overwinter sea-ice conditions in the northern Antarctic Peninsula. Mar. Ecol. Prog. Ser. 642, 1–19. https://doi.org/10.3354/meps13325 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Saba, G. K. et al. Winter and spring controls on the summer food web of the coastal West Antarctic Peninsula. Nat. Commun. 5, 4318. https://doi.org/10.1038/ncomms5318 (2014).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Friedlaender, A. S. et al. Whale distribution in relation to prey abundance and oceanographic processes in shelf waters of the Western Antarctic Peninsula. Mar. Ecol. Prog. Ser. 317, 297–310. https://doi.org/10.3354/meps317297 (2006).

    ADS 
    Article 

    Google Scholar 

  • Murase, H., Matsuoka, K., Ichii, T. & Nishiwaki, S. Relationship between the distribution of euphausiids and baleen whales in the Antarctic (35° E–145° W). Polar Biol 25, 135–145. https://doi.org/10.1007/s003000100321 (2002).

    Article 

    Google Scholar 

  • Reisinger, R. R. et al. Combining regional habitat selection models for large-scale prediction: Circumpolar habitat selection of Southern Ocean humpback whales. Remote Sens. 13, 2074. https://doi.org/10.3390/rs13112074 (2021).

    ADS 
    Article 

    Google Scholar 

  • Thiele, D. et al. Seasonal variability in whale encounters in the Western Antarctic Peninsula. Deep Sea Res. Part II 51, 2311–2325. https://doi.org/10.1016/j.dsr2.2004.07.007 (2004).

    ADS 
    Article 

    Google Scholar 

  • Whitehouse, M. J. et al. Rapid warming of the ocean around South Georgia, Southern Ocean, during the 20th century: Forcings, characteristics and implications for lower trophic levels. Deep Sea Res. Part I 55, 1218–1228. https://doi.org/10.1016/j.dsr.2008.06.002 (2008).

    Article 

    Google Scholar 

  • Dawson, H. R. S., Strutton, P. G. & Gaube, P. The unusual surface chlorophyll signatures of southern Ocean Eddies. J. Geophys. Res. Oceans 123, 6053–6069. https://doi.org/10.1029/2017JC013628 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Kahru, M., Mitchell, B. G., Gille, S. T., Hewes, C. D. & Holm-Hansen, O. Eddies enhance biological production in the weddell-scotia confluence of the Southern Ocean. Geophys. Res. Lett. https://doi.org/10.1029/2007GL030430 (2007).

    Article 

    Google Scholar 

  • Fach, B. A., Hofmann, E. E. & Murphy, E. J. Modeling studies of antarctic krill Euphausia superba survival during transport across the Scotia Sea. Mar. Ecol. Prog. Ser. 231, 187–203. https://doi.org/10.3354/meps231187 (2002).

    ADS 
    Article 

    Google Scholar 

  • Ichii, T., Katayama, K., Obitsu, N., Ishii, H. & Naganobu, M. Occurrence of Antarctic krill (Euphausia superba) concentrations in the vicinity of the South Shetland Islands: Relationship to environmental parameters. Deep Sea Res. Part I 45, 1235–1262. https://doi.org/10.1016/S0967-0637(98)00011-9 (1998).

    Article 

    Google Scholar 

  • Witek, Z., Kalinowski, J. & Grelowski, A. Formation of Antarctic Krill Concentrations in Relation to Hydrodynamic Processes and Social Behaviour. In Antarctic Ocean and Resources Variability (ed. Sahrhage, D.) 237–44 (Springer, 1988). https://doi.org/10.1007/978-3-642-73724-4_21.

    Chapter 

    Google Scholar 

  • Bost, C. A. et al. The importance of oceanographic fronts to marine birds and mammals of the southern oceans. J. Mar. Syst. 78, 363–376. https://doi.org/10.1016/j.jmarsys.2008.11.022 (2009).

    Article 

    Google Scholar 

  • Carranza, M. M. & Gille, S. T. Southern Ocean wind-driven entrainment enhances satellite chlorophyll-a through the summer. J. Geophys. Res. Oceans 120, 304–323. https://doi.org/10.1002/2014JC010203 (2015).

    ADS 
    Article 

    Google Scholar 

  • Luis, A. J. & Pandey, P. C. Seasonal variability of QSCAT-derived wind stress over the Southern Ocean. Geophys. Res. Lett. https://doi.org/10.1029/2003GL019355 (2004).

    Article 

    Google Scholar 

  • Fiechter, J. & Moore, A. M. Interannual spring bloom variability and Ekman pumping in the coastal Gulf of Alaska. J. Geophys. Res. Oceans https://doi.org/10.1029/2008JC005140 (2009).

    Article 

    Google Scholar 

  • Cimino, M. A. et al. Essential krill species habitat resolved by seasonal upwelling and ocean circulation models within the large marine ecosystem of the California Current System. Ecography 43, 1536–1549. https://doi.org/10.1111/ecog.05204 (2020).

    Article 

    Google Scholar 

  • Meehl, G. A. et al. Sustained ocean changes contributed to sudden Antarctic sea ice retreat in late 2016. Nat. Commun. 10, 14. https://doi.org/10.1038/s41467-018-07865-9 (2019).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Parkinson, C. L. A 40-y record reveals gradual Antarctic sea ice increases followed by decreases at rates far exceeding the rates seen in the Arctic. PNAS 116, 14414–14423. https://doi.org/10.1073/pnas.1906556116 (2019).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Siegel, V. Krill stocks in high latitudes of the Antarctic Lazarev Sea: seasonal and interannual variation in distribution, abundance and demography. Polar Biol. 35, 1151–1177. https://doi.org/10.1007/s00300-012-1162-y (2012).

    Article 

    Google Scholar 

  • Francis, D., Eayrs, C., Cuesta, J. & Holland, D. Polar cyclones at the origin of the reoccurrence of the maud rise polynya in austral winter 2017. J. Geophys. Res. Atmos. 124, 5251–5267. https://doi.org/10.1029/2019JD030618 (2019).

    ADS 
    Article 

    Google Scholar 

  • Jena, B., Ravichandran, M. & Turner, J. Recent reoccurrence of large open-ocean polynya on the maud rise seamount. Geophys. Res. Lett. 46, 4320–4329. https://doi.org/10.1029/2018GL081482 (2019).

    ADS 
    Article 

    Google Scholar 

  • Brandt, A. et al. Maud rise–a snapshot through the water column. Deep Sea Res. Part II 58, 1962–1982. https://doi.org/10.1016/j.dsr2.2011.01.008 (2011).

    ADS 
    Article 

    Google Scholar 

  • Plötz, J., Weidel, H. & Bersch, M. Winter aggregations of marine mammals and birds in the north-eastern Weddell Sea pack ice. Polar Biol 11, 305–309. https://doi.org/10.1007/BF00239022 (1991).

    Article 

    Google Scholar 

  • Hazen, E. L. et al. Predicted habitat shifts of Pacific top predators in a changing climate. Nat. Clim. Change 3, 234–238. https://doi.org/10.1038/nclimate1686 (2013).

    ADS 
    Article 

    Google Scholar 

  • Moore, S. E. & Huntington, H. P. Arctic marine mammals and climate change: Impacts and resilience. Ecol. Appl. 18, S157–S165. https://doi.org/10.1890/06-0571.1 (2008).

    Article 
    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    Understanding flammability and bark thickness in the genus Pinus using a phylogenetic approach

    Individualism versus collective movement during travel