in

Investigating the benthic megafauna in the eastern Clarion Clipperton Fracture Zone (north-east Pacific) based on distribution models predicted with random forest

[adace-ad id="91168"]
  • Wedding, L. M. et al. From principles to practice: a spatial approach to systematic conservation planning in the deep sea. Proc. R. Soc. B Biol. Sci. 280, 20131684 (2013).

    CAS 
    Article 

    Google Scholar 

  • Kaiser, S., Smith, C. R. & MartínezArbizu, P. Editorial: Biodiversity of the Clarion Clipperton Fracture Zone. Mar. Biodivers. 47, 259–264 (2017).

    Article 

    Google Scholar 

  • Bluhm, H. Monitoring megabenthic communities in abyssal manganese nodule sites of the East Pacific Ocean in association with commercial deep-sea mining. Aquat. Conserv. Mar. Freshw. Ecosyst. 4, 187–201 (1994).

    Article 

    Google Scholar 

  • Simon-Lledó, E. et al. Multi-scale variations in invertebrate and fish megafauna in the mid-eastern Clarion Clipperton Zone. Prog. Oceanogr. 187, 102405 (2020).

    Article 

    Google Scholar 

  • Simon-Lledó, E. et al. Megafaunal variation in the abyssal landscape of the Clarion Clipperton Zone. Prog. Oceanogr. 170, 119–133 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hein, J. R., Mizell, K., Koschinsky, A. & Conrad, T. A. Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: Comparison with land-based resources. Ore Geol. Rev. 51, 1–14 (2013).

    Article 

    Google Scholar 

  • Kuhn, T., Wegorzewski, A., Rühlemann, C. & Vink, A. Composition, formation, and occurrence of polymetallic nodules. In Deep-Sea Mining: Resource Potential Technical and Environmental Considerations (ed. Sharma, R.) 23–63 (Springer, 2017). https://doi.org/10.1007/978-3-319-52557-0_2.

    Chapter 

    Google Scholar 

  • Simon-Lledó, E. et al. Ecology of a polymetallic nodule occurrence gradient: Implications for deep-sea mining. Limnol. Oceanogr. 64, 1883–1894 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • International Seabed Authority. Deep Seabed Minerals Contractors. https://www.isa.org.jm/deep-seabed-minerals-contractors?qt-contractors_tabs_alt=0#qt-contractors_tabs_alt (2020).

  • Jones, D. O. B. et al. Biological responses to disturbance from simulated deep-sea polymetallic nodule mining. PLoS ONE 12, e0171750 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Niner, H. J. et al. Deep-sea mining with no net loss of biodiversity: An impossible aim. Front. Mar. Sci. 5, 53 (2018).

    ADS 
    Article 

    Google Scholar 

  • Kuhn, T., Uhlenkott, K., Vink, A., Rühlemann, C. & MartínezArbizu, P. Manganese nodule fields from the Northeast Pacific as benthic habitats. In Seafloor Geomorphology as Benthic Habitat: GeoHab Atlas of Seafloor Geomorphic Features and Benthic Habitats (eds Harris, P. T. & Baker, E.) 933–947 (Elsevier, 2020).

    Chapter 

    Google Scholar 

  • Vanreusel, A., Hilario, A., Ribeiro, P. A., Menot, L. & Martínez Arbizu, P. Threatened by mining, polymetallic nodules are required to preserve abyssal epifauna. Sci. Rep. 6, 26808 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Amon, D. J. et al. Insights into the abundance and diversity of abyssal megafauna in a polymetallic-nodule region in the eastern Clarion-Clipperton Zone. Sci. Rep. 6, 30492 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • De Forges, B. R., Koslow, J. A. & Poore, G. C. B. Diversity and endemism of the benthic seamount fauna in the southwest Pacific. Nature 405, 944–947 (2000).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Lodge, M. et al. Seabed mining: International Seabed Authority environmental management plan for the Clarion-Clipperton Zone: A partnership approach. Mar. Policy 49, 66–72 (2014).

    Article 

    Google Scholar 

  • Cuvelier, D. et al. Are seamounts refuge areas for fauna from polymetallic nodule fields?. Biogeosciences 17, 2657–2680 (2020).

    ADS 
    Article 

    Google Scholar 

  • Wedding, L. M. et al. Managing mining of the deep seabed. Science 349, 144–145 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • International Seabed Authority. Decision of the Council of the International Seabed Authority relating to amendments to the Regulations on the Prospecting and Exploration for Polymetallic Nodules in the Area and related matters. (2013).

  • International Seabed Authority. Recommendations for the guidance of contractors for the assessment of the possible environmental impacts arising from exploration for marine minerals in the Area. (2020).

  • Jones, D. O. B., Ardron, J. A., Colaço, A. & Durden, J. M. Environmental considerations for impact and preservation reference zones for deep-sea polymetallic nodule mining. Mar. Policy 118, 103312 (2020).

    Article 

    Google Scholar 

  • Uhlenkott, K., Vink, A., Kuhn, T. & Martínez Arbizu, P. Predicting meiofauna abundance to define preservation and impact zones in a deep-sea mining context using random forest modelling. J. Appl. Ecol. 57, 1210–1221 (2020).

    Article 

    Google Scholar 

  • Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    MATH 
    Article 

    Google Scholar 

  • Ostmann, A. & Martínez Arbizu, P. Predictive models using random forest regression for distribution patterns of meiofauna in Icelandic waters. Mar. Biodivers. 48, 719–735 (2018).

    Article 

    Google Scholar 

  • Uhlenkott, K., Vink, A., Kuhn, T., Gillard, B. & Martínez Arbizu, P. Meiofauna in a potential deep-sea mining area: Influence of temporal and spatial variability on small scale abundance models. Diversity 13, 3 (2021).

    CAS 
    Article 

    Google Scholar 

  • Gazis, I.-Z., Schoening, T., Alevizos, E. & Greinert, J. Quantitative mapping and predictive modeling of Mn nodules’ distribution from hydroacoustic and optical AUV data linked by random forests machine learning. Biogeosciences 15, 7347–7377 (2018).

    ADS 
    Article 

    Google Scholar 

  • Ellis, N., Smith, S. J. & Pitcher, C. R. Gradient forests: Calculating importance gradients on physical predictors. Ecology 93, 156–168 (2012).

    PubMed 
    Article 

    Google Scholar 

  • Miljutina, M. A., Miljutin, D. M., Mahatma, R. & Galéron, J. Deep-sea nematode assemblages of the Clarion-Clipperton Nodule Province (Tropical North-Eastern Pacific). Mar. Biodivers. 40, 1–15 (2010).

    Article 

    Google Scholar 

  • Miljutin, D., Miljutina, M. & Messié, M. Changes in abundance and community structure of nematodes from the abyssal polymetallic nodule field, Tropical Northeast Pacific. Deep Sea Res. Oceanogr. Res. Pap. 106, 126–135 (2015).

    ADS 
    Article 

    Google Scholar 

  • Pape, E., Bezerra, T. N., Hauquier, F. & Vanreusel, A. Limited spatial and temporal variability in meiofauna and nematode communities at distant but environmentally similar sites in an area of interest for deep-sea mining. Front. Mar. Sci. 4, 205 (2017).

    Article 

    Google Scholar 

  • Hauquier, F. et al. Distribution of free-living marine nematodes in the Clarion-Clipperton Zone: Implications for future deep-sea mining scenarios. Biogeosciences 16, 3475–3489 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Uhlenkott, K., Vink, A., Kuhn, T. & Martínez Arbizu, P. Meiofauna abundance and distribution predicted with random forest regression in the German exploration area for polymetallic nodule mining, Clarion Clipperton Fracture Zone, Pacific. (2020).

  • Calinski, T. & Harabasz, J. A dendrite method for cluster analysis. Commun. Stat. Theory Methods 3, 1–27 (1974).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • Thiel, H. et al. The large-scale environmental impact experiment DISCOL: Reflection and foresight. Deep Sea Res. 48, 3869–3882 (2001).

    ADS 
    Article 

    Google Scholar 

  • Brown, A., Wright, R., Mevenkamp, L. & Hauton, C. A comparative experimental approach to ecotoxicology in shallow-water and deep-sea holothurians suggests similar behavioural responses. Aquat. Toxicol. 191, 10–16 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • McClain, C. R. Seamounts: identity crisis or split personality?. J. Biogeogr. 34, 2001–2008 (2007).

    Article 

    Google Scholar 

  • Rogers, A. D. The biology of seamounts: 25 years on. In Advances in Marine Biology Vol. 79 (ed. Sheppard, C.) 137–224 (Academic Press, 2018).

    Google Scholar 

  • Durden, J. M., Bett, B. J., Jones, D. O. B., Huvenne, V. A. I. & Ruhl, H. A. Abyssal hills–hidden source of increased habitat heterogeneity, benthic megafaunal biomass and diversity in the deep sea. Prog. Oceanogr. 137, 209–218 (2015).

    ADS 
    Article 

    Google Scholar 

  • Durden, J. M. et al. Megafaunal ecology of the western Clarion Clipperton Zone. Front. Mar. Sci. 8, 671062 (2021).

    ADS 
    Article 

    Google Scholar 

  • Jones, D. O. B. et al. Environment, ecology, and potential effectiveness of an area protected from deep-sea mining (Clarion Clipperton Zone, abyssal Pacific). Prog. Oceanogr. 197, 102653 (2021).

    Article 

    Google Scholar 

  • Lutz, M. J., Caldeira, K., Dunbar, R. B. & Behrenfeld, M. J. Seasonal rhythms of net primary production and particulate organic carbon flux to depth describe the efficiency of biological pump in the global ocean. J. Geophys. Res. Oceans 112, C10011 (2007).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Volz, J. B. et al. Natural spatial variability of depositional conditions, biogeochemical processes and element fluxes in sediments of the eastern Clarion-Clipperton Zone. Pacific Ocean. Deep Sea Res. 140, 159–172 (2018).

    CAS 
    Article 

    Google Scholar 

  • Smith, C. R., De Leo, F. C., Bernardino, A. F., Sweetman, A. K. & Martínez Arbizu, P. Abyssal food limitation, ecosystem structure and climate change. Trends Ecol. Evol. 23, 518–528 (2008).

    PubMed 
    Article 

    Google Scholar 

  • Ramirez-Llodra, E. et al. Deep, diverse and definitely different: unique attributes of the world’s largest ecosystem. Biogeosciences 7, 2851–2899 (2010).

    ADS 
    Article 

    Google Scholar 

  • Kharbush, J. J. et al. Particulate organic carbon deconstructed: Molecular and chemical composition of particulate organic carbon in the ocean. Front. Mar. Sci. 7, 518 (2020).

    Article 

    Google Scholar 

  • Smith, C. R. et al. Latitudinal variations in benthic processes in the abyssal equatorial Pacific: Control by biogenic particle flux. Deep Sea Res. 44, 2295–2317 (1997).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Kuhn, T. & Rühlemann, C. Exploration of polymetallic nodules and resource assessment: A case study from the German contract area in the Clarion-Clipperton Zone of the tropical Northeast Pacific. Minerals 11, 618 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Christodoulou, M. et al. Unexpected high abyssal ophiuroid diversity in polymetallic nodule fields of the northeast Pacific Ocean and implications for conservation. Biogeosciences 17, 1845–1876 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Valavi, R., Elith, J., Lahoz-Monfort, J. J. & Guillera-Arroita, G. Modelling species presence-only data with random forests. Ecography 44, 1731–1742 (2021).

    Article 

    Google Scholar 

  • Wiedicke-Hombach, M. & Shipboard Scientific Party. Campaign “MANGAN 2008” with R/V Kilo Moana. (2009).

  • Hijmans, R. J. raster: Geographic Data Analysis and Modeling. (2017).

  • Kaufman, L. & Rousseeuw, P. J. Clustering Large Applications (Program CLARA). in Finding Groups in Data 126–163 (Wiley, 1990). https://doi.org/10.1002/9780470316801.ch3.

  • Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M. & Hornik, K. cluster. (2019).

  • Langenkämper, D., Zurowietz, M., Schoening, T. & Nattkemper, T. W. BIIGLE 2.0: Browsing and annotating large marine image collections. Front. Mar. Sci. 4, 83 (2017).

    Article 

    Google Scholar 

  • Simon-Lledó, E. et al. Preliminary observations of the abyssal megafauna of Kiribati. Front. Mar. Sci. 6, 605 (2019).

    Article 

    Google Scholar 

  • Amon, D. J. et al. Megafauna of the UKSRL exploration contract area and eastern Clarion-Clipperton Zone in the Pacific Ocean: Annelida, Arthropoda, Bryozoa, Chordata, Ctenophora, Mollusca. Biodivers. Data J. 5, e14598 (2017).

    Article 

    Google Scholar 

  • Molodtsova, T. N. & Opresko, D. M. Black corals (Anthozoa: Antipatharia) of the Clarion-Clipperton Fracture Zone. Mar. Biodivers. 47, 349–365 (2017).

    Article 

    Google Scholar 

  • Kersken, D., Janussen, D. & MartínezArbizu, P. Deep-sea glass sponges (Hexactinellida) from polymetallic nodule fields in the Clarion-Clipperton Fracture Zone (CCFZ), northeastern Pacific: Part II—Hexasterophora. Mar. Biodivers. 49, 947–987 (2019).

    Article 

    Google Scholar 

  • Horton, T. et al. Recommendations for the standardisation of open taxonomic nomenclature for image-based identifications. Front. Mar. Sci. 8, 620702 (2021).

    Article 

    Google Scholar 

  • Hughes, J. A. & Gooday, A. J. Associations between living benthic foraminifera and dead tests of Syringammina fragilissima (Xenophyophorea) in the Darwin Mounds region (NE Atlantic). Deep Sea Res. 51, 1741–1758 (2004).

    Article 

    Google Scholar 

  • Liaw, A. & Wiener, M. Classification and regression by random Forest. R News 2, 18–22 (2002).

    Google Scholar 

  • Oksanen, J. et al. vegan: Community Ecology Package. (2019).

  • R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2019).

  • Wickham, H. Reshaping data with the reshape package. J. Stat. Softw. 21, 1–20 (2007).

    Article 

    Google Scholar 

  • Wickham, H. The split-apply-combine strategy for data analysis. J. Stat. Softw. 40, 1–29 (2011).

    Google Scholar 

  • Garnier, S. viridisLite: Default Color Maps from ‘matplotlib’ (Lite Version). (2018).

  • Rabosky, A. R. D. et al. Coral snakes predict the evolution of mimicry across New World snakes. Nat. Commun. 7, 1–9 (2016).

    Google Scholar 

  • Smith, M. R. Ternary: An R package for creating ternary plots. Zenodo https://doi.org/10.5281/zenodo.1068996 (2017).


  • Source: Ecology - nature.com

    Energy storage important to creating affordable, reliable, deeply decarbonized electricity systems

    Barcoding and species delimitation of Iranian freshwater crabs of the Potamidae family (Decapoda: Brachyura)