in

Larvicidal and adulticidal effects of some Egyptian oils against Culex pipiens

[adace-ad id="91168"]
  • Jones, R. T., Ant, T. H., Cameron, M. M. & Logan, J. G. Vol. 376 (The Royal Society, 2021).

  • Abdel-Shafi, I. R. et al. Mosquito identification and molecular xenomonitoring of lymphatic filariasis in selected endemic areas in Giza and Qualioubiya Governorates, Egypt. J. Egypt. Soc. Parasitol. 46, 93–100 (2016).

    PubMed 

    Google Scholar 

  • Selim, A., Radwan, A., Arnaout, F. & Khater, H. The recent update of the situation of west nile fever among equids in Egypt after three decades of missing information. Pakistan Veterinary J. 40 (2020).

  • Selim, A., Megahed, A., Kandeel, S., Alouffi, A. & Almutairi, M. M. West Nile virus seroprevalence and associated risk factors among horses in Egypt. Sci. Rep. 11, 1–9 (2021).

    ADS 

    Google Scholar 

  • Selim, A. & Radwan, A. Seroprevalence and molecular characterization of West Nile Virus in Egypt. Compar. Immunol. Microbiol. Infectious Diseases. 71, 101473 (2020).

    Google Scholar 

  • Jones, R. T., Ant, T. H., Cameron, M. M. & Logan, J. G. (The Royal Society, 2021).

  • Selim, A., Manaa, E., Abdelhady, A., Ben Said, M. & Sazmand, A. Serological and molecular surveys of Anaplasma spp. in Egyptian cattle reveal high A. marginale infection prevalence.

  • Selim, A. et al. Seroprevalence and risk factors associated with Canine Leishmaniasis in Egypt. Veterinary Sci. 8, 236 (2021).

    Google Scholar 

  • Selim, A., Megahed, A. A., Kandeel, S. & Abdelhady, A. Risk factor analysis of bovine leukemia virus infection in dairy cattle in Egypt. Compar. Immunol. Microbiol. Infectious Diseases. 72, 101517 (2020).

    Google Scholar 

  • Selim, A. & Abdelhady, A. The first detection of anti-West Nile virus antibody in domestic ruminants in Egypt. Trop. Anim. Health Prod. 52, 3147–3151 (2020).

    PubMed 

    Google Scholar 

  • Selim, A., Abdelhady, A. & Alahadeb, J. Prevalence and first molecular characterization of Ehrlichia canis in Egyptian dogs. Pak. Vet. J. (2020).

  • Khater, H. F. et al. Malaria (IntechOpen, 2019).

    Google Scholar 

  • Baz, M. M. Strategies for mosquito control. PhD thesis, faculty of Science, Benha University, Egypt (2013).

  • Khater, H. F. Prospects of botanical biopesticides in insect pest management. Pharmacologia 3, 641–656 (2012).

    Google Scholar 

  • Khater, H. F. Bioactivity of essential oils as green biopesticides: Recent global scenario. Recent Progress Med. Plants 37, 151–218 (2013).

    ADS 

    Google Scholar 

  • Khan, N. & Mukhtar, H. Tea and health: Studies in humans. Curr. Pharm. Des. 19, 6141–6147 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Govindarajan, M., Rajeswary, M., Hoti, S., Bhattacharyya, A. & Benelli, G. Eugenol, α-pinene and β-caryophyllene from Plectranthus barbatus essential oil as eco-friendly larvicides against malaria, dengue and Japanese encephalitis mosquito vectors. Parasitol. Res. 115, 807–815 (2016).

    PubMed 

    Google Scholar 

  • Khater, H. & Geden, C. Potential of essential oils to prevent fly strike by Lucilia sericata, and effects of oils on longevity of adult flies. J. Vector Ecol. 43, 261–270 (2018).

    PubMed 

    Google Scholar 

  • Noutcha, M. A., Edwin-Wosu, N. I., Ogali, R. E. & Okiwelu, S. N. The role of plant essential oils in mosquito (Diptera: Culicidae) control. Annu. Res. Rev. Biol. 1–9 (2016).

  • WHO. Larval source management: A supplementary malaria vector control measure: An operational manual. (2013).

  • Vatandoost, H. et al. Comparison of CDC bottle bioassay with WHO standard method for assessment susceptibility level of malaria vector, Anopheles stephensi to three imagicides. J. Arthropod. Borne Dis. 13, 17 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Shafaie, F., Aramideh, S., Valizadegan, O., Safaralizadeh, M. H. & Pesyan, N. N. GC/MS analysis of the essential oils of Cupressus arizonica Greene, Juniperus communis L. and Mentha longifolia L. Bull. Chem. Soc. Ethiopia. 33, 389–400 (2019).

    CAS 

    Google Scholar 

  • Modise, S. A. & Ashafa, A. O. T. Larvicidal, pupicidal and insecticidal activities of Cosmos bipinnatus, Foeniculum vulgare and Tagetes minuta against Culex quinquefasciatus mosquitoes. Trop. J. Pharm. Res. 15, 965–972 (2016).

    Google Scholar 

  • Pavela, R., Žabka, M., Bednář, J., Tříska, J. & Vrchotová, N. New knowledge for yield, composition and insecticidal activity of essential oils obtained from the aerial parts or seeds of fennel (Foeniculum vulgare Mill.). Ind. Crops Products. 83, 275–282 (2016).

    CAS 

    Google Scholar 

  • Rocha, D. K. et al. Larvicidal activity against Aedes aegypti of Foeniculum vulgare essential oils from Portugal and Cape Verde. Nat. Product Commun. 10, 1934578X1501000438 (2015).

    CAS 

    Google Scholar 

  • Hassan, M. I., Atwa, W. A., Moselhy, W. A. & Mahmoud, D. A. Efficacy of the green tea, Camellia sinensis leaves extract on some biological activities of Culex pipiens and the detection of its phytochemical constituents. Egypt. Acad. J. Biol. Sci. F. Toxicol. Pest Control. 12, 59–70 (2020).

    Google Scholar 

  • Muema, J. M., Bargul, J. L., Nyanjom, S. G., Mutunga, J. M. & Njeru, S. N. Potential of Camellia sinensis proanthocyanidins-rich fraction for controlling malaria mosquito populations through disruption of larval development. Parasit. Vectors 9, 1–10 (2016).

    Google Scholar 

  • Pavela, R. Larvicidal property of essential oils against Culex quinquefasciatus Say (Diptera: Culicidae). Ind. Crops Prod. 30, 311–315 (2009).

    CAS 

    Google Scholar 

  • de Oliveira, A. A. et al. Larvicidal, adulticidal and repellent activities against Aedes aegypti L. of two commonly used spices, Origanum vulgare L. and Thymus vulgaris L. S. Afr. J. Bot. 140, 17–24 (2021).

    Google Scholar 

  • Bouguerra, N., Tine-Djebbar, F. & Soltani, N. Effect of Thymus vulgaris L. (Lamiales: Lamiaceae) essential oil on energy reserves and biomarkers in Culex pipiens L. (Diptera: Culicidae) from Tebessa (Algeria). J. Essential Oil Bearing Plants. 21, 1082–1095 (2018).

    CAS 

    Google Scholar 

  • Sheng, Z. et al. Screening of larvicidal activity of 53 essential oils and their synergistic effect for the improvement of deltamethrin efficacy against Aedes albopictus. Ind. Crops Products. 145, 112131 (2020).

    CAS 

    Google Scholar 

  • Alkenani, N. A. et al. Molecular identification and bio-control of mosquitoes using black seeds extract in Jeddah. Pak. Vet. J. https://doi.org/10.29261/pakvetj/2021.025 (2021).

    Article 

    Google Scholar 

  • Farag, M. Larvicidal and repellent potential of Sesamum indicum hull peels extracts against Culex pipiens L. (Diptera: Culicidae). Egypt. J. Aquat. Biol. Fisheries. 25, 995–1011 (2021).

    Google Scholar 

  • Abd El Meguid, A. D., Mahmoud, S. H. & Baz, M. M. Toxicological activity of four plant oils against Aedes caspius and Culex pipiens (Diptera: Culicidae). Int. J. Mosq. Res 6, 86–94 (2019).

    Google Scholar 

  • El Ouali Lalami, A., El-Akhal, F., Ez Zoubi, Y. & Taghzouti, K. Study of phytochemical screening and larvicidal efficacy of ehtanolic extract of Salvia officinalis (Lamiaceae) from North Center of Morocco against Culex pipiens (Diptera: Culicidae) vector of serious human diseases. Int. J. Pharmacog. Phytochem. Res. 8, 1663–1668 (2016).

    Google Scholar 

  • Hayouni, E. A. et al. Tunisian Salvia officinalis L. and Schinus molle L. essential oils: Their chemical compositions and their preservative effects against Salmonella inoculated in minced beef meat. Int. J. Food Microbiol. 125, 242–251 (2008).

    CAS 

    Google Scholar 

  • Nabti, I. & Bounechada, M. Larvicidal activities of essential oils extracted from five Algerian medicinal plants against Culiseta longiareolata Macquart. Larvae (Diptera: Culicidae). Eur. J. Biol. 78, 133–138 (2019).

    CAS 

    Google Scholar 

  • Chantawee, A. & Soonwera, M. Larvicidal, pupicidal and oviposition deterrent activities of essential oils from Umbelliferae plants against house fly Musca domestica. Asian Pac. J. Trop. Med. 11, 621 (2018).

    CAS 

    Google Scholar 

  • Belong, P., Ntonga, P. A., Fils, E., Dadji, G. A. F. & Tamesse, J. L. Chemical composition and residue activities of Ocimum canum Sims and Ocimum basilicum L. essential oils on adult female Anopheles funestus. J. Anim. Plant Sci. 19, 2854–2863 (2013).

    Google Scholar 

  • El Zayyat, E. A., Soliman, M. I., Elleboudy, N. A. & Ofaa, S. E. Bioefficacy of some Egyptian aromatic plants on Culex pipiens (Diptera: Culicidae) adults and larvae. J. Arthropod. Borne Dis. 11, 147 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Muturi, E. J., Ramirez, J. L., Zilkowski, B., Flor-Weiler, L. B. & Rooney, A. P. Ovicidal and larvicidal effects of garlic and asafoetida essential oils against West Nile virus vectors. J. Insect Sci. 18, 43 (2018).

    PubMed Central 

    Google Scholar 

  • Alerwi, S. T. et al. Molecular identification and bio-control of Culex quinquefasciatus from Yanbu region. J. Entomol. Zool. Stud. 7, 1081–1086 (2019).

    Google Scholar 

  • Matiadis, D. et al. Curcumin derivatives as potential mosquito larvicidal agents against two mosquito vectors, Culex pipiens and Aedes albopictus. Int. J. Mol. Sci. 22, 8915 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Prak, J.-W., Yoo, D.-H., Kim, H. K., Koo, H.-N. & Kim, G.-H. in 2014 Larvicidal and repellent activities of 33 plant extracts against two mosquitoes as Culex pipiens and Aedes albopictus. 181–181.

  • Jabbar, A., Tariq, M., Gulzar, A., Mukhtar, T. & Zainab, T. Lethal and sub lethal effects of plant extracts and green silver nanoparticles against Culex pipiens. (2021).

  • Khater, H. F. Biocontrol of Some Insects (Benha University, 2003).

    Google Scholar 

  • Baz, M. M., Hegazy, M. M., Khater, H. F. & El-Sayed, Y. A. Comparative evaluation of five oil-resin plant extracts against the mosquito larvae, Culex pipiens Say (Diptera: Culicidae). Pak. Vet. J. https://doi.org/10.29261/pakvetj (2021).

    Article 

    Google Scholar 

  • Khater, H. F. & Shalaby, A.A.-S. Potential of biologically active plant oils to control mosquito larvae (Culex pipiens, Diptera: Culicidae) from an Egyptian locality. Rev. Inst. Med. Trop. Sao Paulo 50, 107–112 (2008).

    PubMed 

    Google Scholar 

  • Baz, M. M., Hegazy, M. M., Khater, H. F. & El-Sayed, Y. A. Comparative evaluation of five oil-resin plant extracts against the mosquito larvae, Culex pipiens Say (Diptera: Culicidae). Pak. Vet. J. 41, 191–196 (2021).

    CAS 

    Google Scholar 

  • Shalaby, A. & Khater, H. Toxicity of certain solvent extracts of Rosmarinus officinalis against Culex pipiens larvae. J. Egypt. German Soc. Zool. E. 48, 69–80 (2005).

    Google Scholar 

  • Chen, W., Wu, H., Ma, Z., Feng, J. & Zhang, X. Evaluation of fumigation activity of thirty-six essential oils against Culex pipiens pallens (Diptera: Culicidae). Acta Entomol. Sin. 61, 86–93 (2018).

    ADS 

    Google Scholar 

  • Makhaik, M., Naik, S. N. & Tewary, D. K. Evaluation of anti-mosquito properties of essential oils. (2005).

  • Jantan, I. B., Yalvema, M. F., Ahmad, N. W. & Jamal, J. A. Insecticidal activities of the leaf oils of eight cinnamomum species against Aedes aegypti and Aedes albopictus. Pharm. Biol. 43, 526–532 (2005).

    Google Scholar 

  • Khater, H. F. & Geden, C. J. Efficacy and repellency of some essential oils and their blends against larval and adult house flies, Musca domestica L. (Diptera: Muscidae). J. Vector Ecol. 44, 256–263 (2019).

    PubMed 

    Google Scholar 

  • Levchenko, M. A., Silivanova, E. A., Khodakov, P. E. & Gholizadeh, S. Insecticidal efficacy of some essential oils against adults of Musca domestica L. (Diptera: Muscidae). Int. J. Trop. Insect Sci. 1–9 (2021).

  • Pushpalatha, E. & Viswan, K. A. Adulticidal and repellent activities of Melaleuca leucadendron (L.) and Callistemon citrinus (Curtis) against filarial and dengue vectors. Assoc. Advancement Entomol. 38, 149–154 (2013).

    Google Scholar 

  • Sahi, N. M. Evaluation of insecticidal activity of bioactive compounds from Eucalyptus citriodora against Tribolium castaneum. Int. J. Pharm. Phytochem. Res. 8, 1256–1270 (2016).

    Google Scholar 

  • Fu, J. et al. Fumigant toxicity and repellence activity of camphor essential oil from Cinnamonum camphora Siebold against Solenopsis invicta workers (Hymenoptera: Formicidae). J. Insect Sci. 15, 129 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zulhussnain, M. et al. Insecticidal and Genotoxic effects of some indigenous plant extracts in Culex quinquefasciatus Say Mosquitoes. Sci. Rep. 10, 1–13 (2020).

    Google Scholar 

  • Sutthanont, N. et al. Chemical composition and larvicidal activity of edible plant-derived essential oils against the pyrethroid-susceptible and-resistant strains of Aedes aegypti (Diptera: Culicidae). J. Vector Ecol. 35, 106–115 (2010).

    PubMed 

    Google Scholar 

  • Ling Chang, C., Kyu Cho, I. & Li, Q. X. Insecticidal activity of basil oil, trans-anethole, estragole, and linalool to adult fruit flies of Ceratitis capitata, Bactrocera dorsalis, and Bactrocera cucurbitae. J. Econ. Entomol. 102, 203–209 (2009).

    Google Scholar 

  • da Silva, J. B. P. et al. Thiosemicarbazones as Aedes aegypti larvicidal. Eur. J. Med. Chem. 100, 162–175 (2015).

    PubMed 

    Google Scholar 

  • Ali, A., Radwan, M. M., Wanas, A. S. & Khan, I. A. Repellent activity of carrot seed essential oil and its pure compound, carotol, against mosquitoes. J. Am. Mosq. Control Assoc. 34, 272–280 (2018).

    PubMed 

    Google Scholar 

  • Branquinho, L. S. et al. Anti-inflammatory and toxicological evaluation of essential oil from Piper glabratum leaves. J. Ethnopharmacol. 198, 372–378 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Sarma, R., Adhikari, K., Mahanta, S. & Khanikor, B. Combinations of plant essential oil based terpene compounds as larvicidal and adulticidal agent against Aedes aegypti (Diptera: Culicidae). Sci. Rep. 9, 1–12 (2019).

    ADS 

    Google Scholar 

  • Gad, M., Aref, S., Abdelhamid, A., Elwassimy, M. & Abdel-Raheem, S. Biologically active organic compounds as insect growth regulators (IGRs): Introduction, mode of action, and some synthetic methods. Curr. Chem. Lett. 10, 393–412 (2021).

    Google Scholar 


  • Source: Ecology - nature.com

    Microbes and minerals may have set off Earth’s oxygenation

    Caller ID for Risso’s and Pacific White-sided dolphins