in

Nitrogen and carbon stable isotope analysis sheds light on trophic competition between two syntopic land iguana species from Galápagos

[adace-ad id="91168"]
  • Luiselli, L., Akani, G. & Capizzi, D. Food resource partitioning of a community of snakes in a swamp rainforest of south-eastern Nigeria. J. Zool. 246(2), 125–133. https://doi.org/10.1111/j.1469-7998.1998.tb00141.x (1998).

    Article 

    Google Scholar 

  • Rouag, R., Djilali, H., Gueraiche, H. & Luiselli, L. Resource partitioning patterns between two sympatric lizard species from Algeria. J. Arid Environ. 69, 158–168. https://doi.org/10.1016/j.jaridenv.2006.08.008 (2007).

    ADS 
    Article 

    Google Scholar 

  • Bergeron, R. & Blouin-Demers, G. Niche partitioning between two sympatric lizards in the Chiricahua Mountains of Arizona. Copeia 108(3), 570–577. https://doi.org/10.1643/CH-19-268 (2020).

    Article 

    Google Scholar 

  • Lucek, K., Butlin, R. K. & Patsiou, T. Secondary contact zones of closely-related Erebia butterflies overlap with narrow phenotypic and parasitic clines. J. Evol. Biol. 33(9), 1152–1163. https://doi.org/10.1111/jeb.13669 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Freeman, B. G. Competitive interaction upon secondary contact drive elevational divergence in tropical birds. Am. Nat. 186(4), 470–479. https://doi.org/10.5061/dryad.6qg3g (2015).

    Article 
    PubMed 

    Google Scholar 

  • Schoener, T. W. Resource partitioning in ecological communities. Science 185(4145), 27–39 (1974).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Rivas, L. R. A Reinterpretation of the concepts “sympatric” and “allopatric” with proposal of the additional terms “syntopic” and “allotopic”. Syst. Zool. 13(1), 42 (1964).

    Article 

    Google Scholar 

  • Macarthur, R. & Levins, R. The limiting similarity, convergence, and divergence of coexisting species. Am. Nat. 101(921), 377–385 (1967).

    Article 

    Google Scholar 

  • Dayan, T. & Simberloff, D. Ecological and community-wide character displacement: The next generation. Ecol. Lett. 8(8), 875–894. https://doi.org/10.1111/j.1461-0248.2005.00791.x (2005).

    Article 

    Google Scholar 

  • Holomuzki, J. R., Feminella, J. W. & Power, M. E. Biotic interactions in freshwater benthic habitats. J. N. Am. Benthol. Soc. 29(1), 220–244. https://doi.org/10.1899/08-044.1 (2010).

    Article 

    Google Scholar 

  • Ferretti, F. et al. Competition between wild herbivores: Reintroduced red deer and Apennine chamois. Behav. Ecol. 26(2), 550–559. https://doi.org/10.1093/beheco/aru226 (2015).

    Article 

    Google Scholar 

  • Takada, H., Yano, R., Katsumata, A., Takatsuki, S. & Minami, M. Diet compositions of two sympatric ungulates, the Japanese serow (Capricornis crispus) and the sika deer (Cervus nippon), in a montane forest and an alpine grassland of Mt. Asama central, Japan. Mamm. Biol. 101, 681–694. https://doi.org/10.1007/s42991-021-00122-5 (2021).

    Article 

    Google Scholar 

  • Hubbel, S. P. The Unified Neutral Theory of Biodiversity and Biogeography (Princeton University Press, 2001) (ISBN 9780691021287).

    Google Scholar 

  • Bell, G. Neutral macroecology. Science 293, 2413–2418. https://doi.org/10.1126/science.293.5539.2413 (2001).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Rosindell, J., Hubbel, S. P. & Etienne, R. S. The unified neutral theory of biodiversity and biogeography at age ten. Trends Ecol. Evol. 26(7), 340–348. https://doi.org/10.1016/j.tree.2011.03.024 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Cowie, R. H. & Holland, B. S. Dispersal is fundamental to biogeography and the evolution of biodiversity on oceanic islands. J. Biogeogr. 33, 193–198. https://doi.org/10.1111/j.1365-2699.2005.01383.x (2006).

    Article 

    Google Scholar 

  • Amarasekare, P. & Nisbet, R. M. Spatial heterogeneity, source-sink dynamics, and the local coexistence of competing species. Am. Nat. 158(6), 572–584. https://doi.org/10.1086/323586 (2001).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Kumar, K., Gentile, G. & Grant, T. D. Conolophus subcristatus. The IUCN Red List of Threatened Species 2020, e.T5240A3014082 (2020). https://doi.org/10.2305/IUCN.UK.2020-2.RLTS.T5240A3014082.en

  • Gentile, G. Conolophus marthae. The IUCN Red List of Threatened Species 2012, e. T174472A1414375 (2012). https://doi.org/10.2305/IUCN.UK.2012-1.RLTS.T174472A1414375.en

  • Gentile, G., Marquez, C., Snell, H. L., Tapia, W. & Izurieta, A. Conservation of a New Flagship Species: The Galápagos Pink Land Iguana (Conolophus marthae Gentile and Snell, 2009). In Problematic Wildlife: A Cross-Disciplinary Approach (ed. Angelici, F. M.) 315–336 (Springer International Publishing, 2016). https://doi.org/10.1007/978-3-319-22246-2_15.

    Chapter 

    Google Scholar 

  • Gentile, G. & Snell, H. L. Conolophus marthae sp. Nov. (Squamata, iguanidae), a new species of land iguana from the Galápagos Archipelago. Zootaxa 2201, 1–10 (2009).

    Article 

    Google Scholar 

  • Colosimo, G. et al. Chemical signatures of femoral pore secretions in two syntopic but reproductively isolated species of Galápagos land iguanas (Conolophus marthae and C. subcristatus). Sci. Rep. 10(1), 14314. https://doi.org/10.1038/s41598-020-71176-7 (2020).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jackson, M. Galápagos: A Natural History, Revised and Expanded (University of Calgary Press, 1994).

    Google Scholar 

  • Traveset, A. et al. Galápagos land iguana (Conolophus subcristatus) as a seed disperser. Integr. Zool. 11(3), 207–213. https://doi.org/10.1111/1749-4877.12187 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Di Giambattista, L. et al. Molecular data exclude current hybridization between iguanas Conolophus marthae and C. subcristatus on Wolf volcano (Galápagos islands). Conserv. Genet. 19(6), 1461–1469. https://doi.org/10.1007/s10592-018-1114-3 (2018).

    Article 

    Google Scholar 

  • MacLeod, A. et al. Hybridization masks speciation in the evolutionary history of the Galápagos marine iguana. Proc. R. Soc. B 282, 1–9. https://doi.org/10.1098/rspb.2015.0425 (2015).

    Article 

    Google Scholar 

  • Gause, G. F. The Struggle for Existence (Williams and Wilkins Company, 1934).

    Book 

    Google Scholar 

  • Hardin, G. The competitive exclusion principle. Science 131(3409), 1292–1297 (1960).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Ashrafi, S., Beck, A., Rutishauser, M., Arlettaz, R. & Bontadina, F. Trophic niche partitioning of cryptic species of long-eared bats in Switzerland: Implications for conservation. Eur. J. Wildl. Res. 57, 843–849. https://doi.org/10.1007/s10344-011-0496-z (2011).

    Article 

    Google Scholar 

  • Bleyhl, B. et al. Assessing niche overlap between domestic and threatened wild sheep to identify conservation priority areas. Divers. Distrib. 25(1), 129–141. https://doi.org/10.1111/ddi.12839 (2019).

    Article 

    Google Scholar 

  • Newsome, S. D., del Rio, C. M., Bearhop, S. & Phillips, D. L. A niche for isotopic ecology. Front. Ecol. Environ. 5(8), 429–436. https://doi.org/10.1890/060150.1 (2007).

    Article 

    Google Scholar 

  • Riera, P., Stal, L. J. & Nieuwenhuize, J. δ13C versus δ15N of co-occurring mollusks within a community dominated by Crassostrea gigas and Crepidula ornicate (Oossterschelde, The Netherlands). Mar. Ecol. Prog. Ser. 240, 291–295 (2002).

    ADS 
    Article 

    Google Scholar 

  • Page, B., McKenzie, J. & Goldsworthy, S. D. Dietary resources partitioning among sympatric New Zealand and Australian fur seals. Mar. Ecol. Prog. Ser. 293, 283–302 (2005).

    ADS 
    Article 

    Google Scholar 

  • DeNiro, M. J. & Epstein, S. Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta 42(5), 495–506 (1978).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • DeNiro, M. J. & Epstein, S. Influence of diet on the distribution of nitrogen isotopes in animals. Geochim. Cosmochim. Acta 45(3), 341–351 (1981).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Post, D. M. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology 83(3), 703–718. https://doi.org/10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2 (2002).

    Article 

    Google Scholar 

  • Crawford, K., McDonald, R. A. & Bearhop, S. Applications of stable isotope techniques to the ecology of mammals. Mammal. Rev. 38(1), 87–107. https://doi.org/10.1111/j.1365-2907.2008.00120.x (2008).

    Article 

    Google Scholar 

  • Trueman, M. & d’Ozouville, N. Characterizing the Galápagos terrestrial climate in the face of global climate change. Gala Res. 67, 26–37 (2010).

    Google Scholar 

  • Paltán, H. A. et al. Climate and sea surface trends in the Galápagos Islands. Sci. Rep. 11(1), 1–13. https://doi.org/10.1038/s41598-021-93870-w (2021).

    CAS 
    Article 

    Google Scholar 

  • Rivas-Torres, G. F., Benítez, F. L., Rueda, D., Sevilla, C. & Mena, C. F. A methodology for mapping native and invasive vegetation coverage in archipelagos: An example from the Galápagos islands. Prog. Phys. Geogr. 42(1), 83–111. https://doi.org/10.1177/0309133317752278 (2018).

    Article 

    Google Scholar 

  • Gentile, G., Ciambotta, M. & Tapia, W. Illegal wildlife trade in Galápagos: Molecular tools help taxonomic identification and guide rapid repatriation of confiscated iguanas. Conserv. Genet. Resour. 5, 867–872. https://doi.org/10.1007/s12686-013-9915-7 (2013).

    Article 

    Google Scholar 

  • Stephens, R. B., Ouimette, A. P., Hobbie, E. A. & Rowe, R. J. Re-evaluating trophic discrimination factors (Δδ13C and Δδ15N) for diet reconstruction. Ecol. Mono 92, e1525. https://doi.org/10.1002/ecm.1525 (2022).

    CAS 
    Article 

    Google Scholar 

  • Hobson, K. A. & Clark, R. G. Assessing avian diets using stable isotopes I: Turnover of 13C in tissues. The Condor 94(1), 181–188. https://doi.org/10.2307/1368807 (1992).

    Article 

    Google Scholar 

  • Li, C.-H., Roth, J. D. & Detwiler, J. T. Isotopic turnover rates and diet-tissue discrimination depend on feeding habits of freshwater snails. PLoS ONE 13(7), e0199713. https://doi.org/10.1371/journal.pone.0199713 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Steinitz, R., Lemm, J., Pasachnik, S. & Kurle, C. Diet-tissue stable isotope (δ13C and δ15N) discrimination factors for multiple tissues from terrestrial reptiles. Rapid Commun. Mass Spectrom. 30(1), 9–21. https://doi.org/10.1002/rcm.7410 (2016).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Ethier, D. M., Kyle, C. J., Kyser, T. K. & Nocera, J. J. Variability in the growth patterns of the cornified claw sheath among vertebrates: Implications for using biogeochemistry to study animal movement. Can. J. Zool. 88(11), 1043–1051. https://doi.org/10.1139/Z10-073 (2010).

    Article 

    Google Scholar 

  • Aresco, M. J. & James, F. C. Ecological relationships of turtles in northern Florida lakes: A study of omnivory and the structure of a lake food web. Florida Fish and Wildlife Conservation Commission (2005). https://www.semanticscholar.org/paper/ECOLOGICAL-RELATIONSHIPS-OF-TURTLES-IN-NORTHERN-A-A-Aresco-James/f6d59265eb6494aa19cfde7d2d80bb165e6432ac

  • Lourenço, P. M., Granadeiro, J. P., Guilherme, J. L. & Catry, T. Turnover rates of stable isotopes in avian blood and toenails: Implications for dietary and migration studies. J. Exp. Mar. Biol. Ecol. 472, 89–96. https://doi.org/10.1016/j.jembe.2015.07.006 (2015).

    CAS 
    Article 

    Google Scholar 

  • Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER—Stable isotope Bayesian ellipses in r. J. Animal Ecol. 80(3), 595–602. https://doi.org/10.1111/j.1365-2656.2011.01806.x (2011).

    Article 

    Google Scholar 

  • Wikelski, M. & Romero, L. M. Body size, performance and fitness in Galápagos marine iguanas. Integr Comp Biol 43(3), 376–386. https://doi.org/10.1093/icb/43.3.376 (2003).

    Article 
    PubMed 

    Google Scholar 

  • Iverson, J., Smith, G. & Pieper, L. Factors Affecting Long-Term Growth of the Allen Cays Rock Iguana in the Bahamas. In Iguanas: Biology and Conservation (eds Alberts, A. et al.) 176–192 (University of California Press, 2004). https://doi.org/10.1525/9780520930117-018.

    Chapter 

    Google Scholar 

  • Smith, G. R. & Iverson, J. B. Effects of tourism on body size, growth, condition, and demography in the Allen Cay Iguana. Herpetol. Conserv. Biol. 11, 214–221 (2016).

    Google Scholar 

  • Wikelski, M., Carrillo, V. & Trillmich, F. Energy limits to body size in a grazing reptile, the Galápagos Marine Iguana. Ecology 78(7), 2204–2217. https://doi.org/10.2307/2265956 (1997).

    Article 

    Google Scholar 

  • Bulakhova, N. A. et al. Inter-observer and intra-observer differences in measuring body length: A test in the common lizard, Zootoca vivipara. Amphibia-Reptilia 32(4), 477–484. https://doi.org/10.1163/156853811X601636 (2011).

    Article 

    Google Scholar 

  • R Development Core Team. R: A language and environment for statistical computing (2021). https://cran.r-project.org

  • Goslee, S. C. & Urban, D. L. The ecodist package for dissimilarity-based analysis of ecological data. J. Stat. Softw. 22(7), 1–19. https://doi.org/10.18637/jss.v022.i07 (2007).

    Article 

    Google Scholar 

  • Randin, C. F., Jaccard, H., Vittoz, P., Yoccoz, N. G. & Guisan, A. Land use improves spatial predictions of mountain plant abundance but not presence–absence. J. Veg. Sci. 20, 996–1008. https://doi.org/10.1111/j.1654-1103.2009.01098.x (2009).

    Article 

    Google Scholar 

  • Broennimann, O., Di Cola, V. & Guisan, A. ecospat: Spatial Ecology Miscellaneous Methods. R package version 3.2.1 (2022) https://CRAN.R-project.org/package=ecospat

  • Borcard, D., Legendre, P. & Drapeau, P. Partialling out the spatial component of ecological variation. Ecology 73(3), 1045–1055. https://doi.org/10.2307/1940179 (1992).

    Article 

    Google Scholar 

  • Wood, S. N. Generalized Additive Models: An Introduction with R 2nd edn. (Chapman and Hall/CRC, 2017). https://doi.org/10.1201/9781315370279.

    Book 
    MATH 

    Google Scholar 

  • Van Marken Lichtenbelt, W. D. Optimal foraging of a herbivorous lizard, the green iguana in a seasonal environment. Oecologia 95, 246–256. https://doi.org/10.1007/BF00323497 (1993).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • Pasachnik, S. A. & Martin-Velez, V. An evaluation of the diet of Cyclura iguanas in the Dominican Republic. Herpetol. Bull. 140, 6–12 (2017).

    Google Scholar 

  • Cerling, T. E. et al. Global vegetation change through the Miocene/Pliocene boundary. Nature 389(6647), 153–158. https://doi.org/10.1038/38229 (1997).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • O’Leary, M. H. Carbon isotopes in photosynthesis. Bioscience 38(5), 328–336. https://doi.org/10.2307/1310735 (1988).

    Article 

    Google Scholar 

  • Snell, H. L. & Tracy, C. R. Behavioral and morphological adaptations by Galapagos land iguanas (Conolophus subcristatus) to water and energy requirements of eggs and neonates. Am. Zool. 25(4), 1009–1018. https://doi.org/10.1093/icb/25.4.1009 (1985).

    Article 

    Google Scholar 

  • Christian, K., Tracy, C. R. & Porter, W. P. Diet, digestion, and food preferences of Galápagos land iguanas. Herpetologica 40(2), 205–212 (1984).

    Google Scholar 

  • Mallona, I., Egea-Cortines, M. & Weiss, J. Conserved and divergent rhythms of crassulacean acid metabolism-related and core clock gene expression in the cactus Opuntia ficus-indica. Plant Physiol. 156, 1978–1989. https://doi.org/10.1104/pp.111.179275 (2011).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • San Sebastián, O., Navarro, J., Llorente, G. A. & Richter-Boix, Á. Trophic strategies of a non-native and a native amphibian species in shared ponds. PLoS ONE 10(6), 1–17. https://doi.org/10.1371/journal.pone.0130549 (2015).

    CAS 
    Article 

    Google Scholar 

  • Perga, M. E. & Grey, J. Laboratory measures of isotope discrimination factors: Comments on Caut, Angulo & Courchamp (2008, 2009). J. Appl. Ecol. 47(4), 942–947. https://doi.org/10.1111/j.1365-2664.2009.01730.x (2010).

    CAS 
    Article 

    Google Scholar 

  • Freeman, B. Sexual niche partitioning in two species of new Guinean Pachycephala whistlers. J. Field Ornithol. 85(1), 23–30. https://doi.org/10.1111/jofo.12046 (2014).

    Article 

    Google Scholar 

  • Werner, D. I. Social Organization and Ecology of Land Iguanas, Conolophus subcristatus, on Isla Fernandina, Galápagos. In Iguanas of the World: Their Behavior, Ecology, and Conservation (eds Burghardt, G. M. & Rand, A. S.) 342–365 (Noyes Publications, 1982).

    Google Scholar 

  • Doi, H., Akamatsu, F. & González, A. L. Starvation effects on nitrogen and carbon stable isotopes of animals: An insight from meta-analysis of fasting experiments. R. Soc. Open Sci. 4(8), 170633. https://doi.org/10.1098/rsos.170633 (2017).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Persaud, A., Dillon, P., Molot, L. & Hargan, K. Relationships between body size and trophic position of consumers in temperate freshwater lakes. Aquat. Sci. 74(1), 203–212. https://doi.org/10.1007/s00027-011-0212-9 (2012).

    Article 

    Google Scholar 

  • Keppeler, F. W. et al. Body size, trophic position, and the coupling of different energy pathways across a saltmarsh landscape. Limnol. Oceanogr. Lett. 6(6), 360–368. https://doi.org/10.1002/lol2.10212 (2021).

    Article 

    Google Scholar 

  • Hanson, J. O. et al. Feeding across the food web: The interaction between diet, movement and body size in estuarine crocodiles (Crocodylus porosus). Austral. Ecol. 40(3), 275–286. https://doi.org/10.1111/aec.12212 (2015).

    Article 

    Google Scholar 

  • Gustavino, B., Terrinoni, S., Paglierani, C. & Gentile, G. Conolophus marthae vs. Conolophus subcristatus: Does the skin pigmentation pattern exert a protective role against DNA damaging effect induced by UV light exposure? Analysis of blood smears through the micronucleus test. Paper presented at the Galápagos Land and Marine Iguanas Workshop, IUCN SSC Iguana Specialist Group Meeting, Puerto Ayora, 28–29 October 2014.

  • Di Giacomo, C. et al. 25–Hydroxivitamin D plasma levels in natural populations of pigmented and partially pigmented land iguanas from Galápagos (Conolophus spp.). Hind 2022, 1–9. https://doi.org/10.1155/2022/7741397 (2022).

    CAS 
    Article 

    Google Scholar 

  • Percie du Sert, N. et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol. 18(7), e3000411. https://doi.org/10.1371/journal.pbio.3000411 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    New process could enable more efficient plastics recycling

    Spatial structure of city population growth