in

No short-term effect of sinking microplastics on heterotrophy or sediment clearing in the tropical coral Stylophora pistillata

[adace-ad id="91168"]
  • 1.

    GESAMP. Global pollution trends: coastal ecosystem assessment for the past century. 101 (2018).

  • 2.

    Andrady, A. L. Microplastics in the marine environment. Mar. Pollut. Bull. 62, 1596–1605 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 3.

    Hartmann, N. B. et al. Microplastics as vectors for environmental contaminants: Exploring sorption, desorption, and transfer to biota. Integr. Environ. Assess. Manag. 13, 488–493 (2017).

    PubMed 

    Google Scholar 

  • 4.

    Bour, A., Avio, C. G., Gorbi, S., Regoli, F. & Hylland, K. Presence of microplastics in benthic and epibenthic organisms: Influence of habitat, feeding mode and trophic level. Environ. Pollut. 243, 1217–1225 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 5.

    Jambeck, J. R. et al. Plastic waste inputs from land into the ocean. Science (80-) 47, 768–770 (2015).

    ADS 

    Google Scholar 

  • 6.

    PlasticsEurope. Plastics—The Facts 2020. PlasticsEurope (2020).

  • 7.

    Sweet, M., Steifox, M. & Lamb, J. Plastics and Shallow Water Coral Reefs. Synthesis of the Science for Policy-Makers (2019).

  • 8.

    Stafford, R. & Jones, P. J. S. Viewpoint—Ocean plastic pollution: A convenient but distracting truth? Mar. Policy 19, 0–1 (2019).

  • 9.

    Backhaus, T. & Wagner, M. Microplastics in the environment: Much ado about nothing? A debate. Glob. Challenges 1900022, 1900022 (2019).

    Google Scholar 

  • 10.

    Browne, M. A., Niven, S. J., Galloway, T. S., Rowland, S. J. & Thompson, R. C. Microplastic moves pollutants and additives to worms, reducing functions linked to health and biodiversity. Curr. Biol. 23, 2388–2392 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 11.

    Lebreton, L. C. M. et al. River plastic emissions to the world’s oceans. Nat. Commun. 8, 15611 (2017).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 12.

    Donovan, M. K. et al. Nitrogen pollution interacts with heat stress to increase coral bleaching across the seascape. Proc. Natl. Acad. Sci. USA. 117, 5351–5357 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    Lamb, J. B. et al. Plastic waste associated with disease on coral reefs. Science (80-) 359, 460–462 (2018).

    CAS 
    ADS 

    Google Scholar 

  • 14.

    Burke, L., Reytar, K., Spalding, M. & Perry, A. Reefs at Risk Revisited (2011).

  • 15.

    Tan, F. et al. Microplastic pollution around remote uninhabited coral reefs of Nansha Islands, South China Sea. Sci. Total Environ. 725, 138383 (2020).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 16.

    Bucol, L. A. et al. Microplastics in marine sediments and rabbitfish (Siganus fuscescens) from selected coastal areas of Negros Oriental, Philippines. Mar. Pollut. Bull. 150, 110685 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 17.

    Galloway, T. S., Cole, M. & Lewis, C. Interactions of microplastic debris throughout the marine ecosystem. Nat. Ecol. Evol. 1, 1–8 (2017).

    Google Scholar 

  • 18.

    Lagarde, F. et al. Microplastic interactions with freshwater microalgae: Hetero-aggregation and changes in plastic density appear strongly dependent on polymer type. Environ. Pollut. 215, 331–339 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 19.

    Cordova, M. R., Hadi, T. A. & Prayudha, B. Occurrence and abundance of microplastics in coral reef sediment: A case study in Sekotong, Lombok-Indonesia. AES Bioflux 10, 23–29 (2018).

    Google Scholar 

  • 20.

    Ogston, A. S., Storlazzi, C. D., Field, M. E. & Presto, M. K. Sediment resuspension and transport patterns on a fringing reef flat, Molokai, Hawaii. Coral Reefs 23, 559–569 (2004).

    Google Scholar 

  • 21.

    Bellwood, D. R. Direct estimate of bioerosion by two parrotfish species, Chlorurus gibbus and C. sordidus on the Great Barrier Reef, Australia. Mar. Biol. 121, 419–429 (1995).

    Google Scholar 

  • 22.

    Rosenfeld, M., Bresler, V. & Abelson, A. Sediment as a possible food source for corals. Ecol. Lett. 2, 345–348 (1999).

    Google Scholar 

  • 23.

    Rogers, C. S. Responses of coral reefs and reef organisms to sedimentation. Mar. Ecol. Prog. Ser. 62, 185–202 (1990).

    ADS 

    Google Scholar 

  • 24.

    Bastidas, C., Bone, D. & Garcia, E. M. Sedimentation rates and metal content of sediments in a Venezuelan coral reef. Mar. Pollut. Bull. 38, 16–24 (1999).

    CAS 

    Google Scholar 

  • 25.

    Smith, L. D., Negri, A. P., Philipp, E., Webster, N. S. & Heyward, A. J. The effects of antifoulant-paint-contaminated sediments on coral recruits and branchlets. Mar. Biol. 143, 651–657 (2003).

    CAS 

    Google Scholar 

  • 26.

    Stafford-Smith, M. Sediment rejection efficiency of 22 species of Australian scleractinian corals. Mar. Biol. 115, 229–243 (1993).

    Google Scholar 

  • 27.

    Junjie, R. K., Browne, N. K., Erftemeijer, P. L. A. & Todd, P. A. Impacts of sediments on coral energetics: Partitioning the effects of turbidity and settling particles. PLoS ONE 9, e107195 (2014).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 28.

    Hall, N. M., Berry, K. L. E., Rintoul, L. & Hoogenboom, M. O. Microplastic ingestion by scleractinian corals. Mar. Biol. 162, 725–732 (2015).

    CAS 

    Google Scholar 

  • 29.

    Allen, A. S., Seymour, A. C. & Rittschof, D. Chemoreception drives plastic consumption in a hard coral. Mar. Pollut. Bull. 124, 198–205 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 30.

    Mouchi, V. et al. Long-term aquaria study suggests species-specific responses of two cold-water corals to macro-and microplastics exposure. Environ. Pollut. 253, 322–329 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 31.

    Tang, J., Ni, X., Zhou, Z., Wang, L. & Lin, S. Acute microplastic exposure raises stress response and suppresses detoxification and immune capacities in the scleractinian coral Pocillopora damicornis. Environ. Pollut. 243, 66–74 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 32.

    Chapron, L. et al. Macro- and microplastics affect cold-water corals growth, feeding and behaviour. Sci. Rep. 8, 1–8 (2018).

    CAS 

    Google Scholar 

  • 33.

    Hankins, C., Moso, E. & Lasseigne, D. Microplastics impair growth in two atlantic scleractinian coral species, Pseudodiploria clivosa and Acropora cervicornis. Environ. Pollut. 275, 116649 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 34.

    Rocha, R. J. M. et al. Do microplastics affect the zoanthid Zoanthus sociatus?. Sci. Total Environ. 713, 136659 (2020).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 35.

    Reichert, J. et al. Interactive effects of microplastic pollution and heat stress on reef-building corals. Environ. Pollut. 290, 118010 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 36.

    Rotjan, R. D. et al. Patterns, dynamics and consequences of microplastic ingestion by the temperate coral, Astrangia poculata. Proc. R. Soc. B Biol. Sci. 286, 20190726 (2019).

    CAS 

    Google Scholar 

  • 37.

    Reichert, J., Schellenberg, J., Schubert, P. & Wilke, T. Responses of reef building corals to microplastic exposure. Environ. Pollut. 237, 955–960 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 38.

    Hankins, C., Duffy, A. & Drisco, K. Scleractinian coral microplastic ingestion: Potential calcification effects, size limits, and retention. Mar. Pollut. Bull. 135, 587–593 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 39.

    Reichert, J., Arnold, A. L., Hoogenboom, M. O., Schubert, P. & Wilke, T. Impacts of microplastics on growth and health of hermatypic corals are species-specific. Environ. Pollut. 254, 113074 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 40.

    Mendrik, F. M. et al. Species-specific impact of microplastics on coral physiology. Environ. Pollut. 269, 116238 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 41.

    Corona, E., Martin, C., Marasco, R. & Duarte, C. M. Passive and active removal of marine microplastics by a mushroom Coral (Danafungia scruposa). Front. Mar. Sci. 7, 1–9 (2020).

    ADS 

    Google Scholar 

  • 42.

    Martin, C., Corona, E., Mahadik, G. A. & Duarte, C. M. Adhesion to coral surface as a potential sink for marine microplastics. Environ. Pollut. 255, 113281 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 43.

    Oldenburg, K. S., Urban-Rich, J., Castillo, K. D. & Baumann, J. H. Microfiber abundance associated with coral tissue varies geographically on the Belize Mesoamerican Barrier Reef System. Mar. Pollut. Bull. 163, 111938 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 44.

    Axworthy, J. B. & Padilla-Gamiño, J. L. Microplastics ingestion and heterotrophy in thermally stressed corals. Sci. Rep. 9, 1–8 (2019).

    Google Scholar 

  • 45.

    Houlbrèque, F. & Ferrier-Pagès, C. Heterotrophy in tropical scleractinian corals. Biol. Rev. 84, 1–17 (2009).

    PubMed 

    Google Scholar 

  • 46.

    Borja, A. et al. Past and future grand challenges in marine ecosystem ecology. Front. Mar. Sci. 7, 362 (2020).

    Google Scholar 

  • 47.

    Rochman, C. M., Hentschel, B. T. & The, S. J. Long-term sorption of metals is similar among plastic types: Implications for plastic debris in aquatic environments. PLoS ONE 9, e85433 (2014).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 48.

    Niu, Y., Ying, D., Li, K., Wang, Y. & Jia, J. Adsorption of heavy-metal ions from aqueous solution onto chitosan-modified polyethylene terephthalate (PET). Res. Chem. Intermed. 43, 4213–4245 (2017).

    CAS 

    Google Scholar 

  • 49.

    Frias, J., Sobral, P. & Ferreira, A. Organic pollutants in microplastics from two beaches of the Portuguese coast. Mar. Pollut. Bull. 60, 1988–1992 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 50.

    Wright, S. L., Thompson, R. C. & Galloway, T. S. The physical impacts of microplastics on marine organisms: A review. Environ. Pollut. 178, 483–492 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 51.

    Botterell, Z. L. R. et al. Bioavailability of microplastics to marine zooplankton: Effect of shape and infochemicals. Environ. Sci. Technol. 54, 12024–12033 (2020).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 52.

    Wild, C. et al. Coral mucus functions as an energy carrier and particle trap in the ecosystem. Nature 428, 66–70 (2004).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 53.

    Benson, A. & Muscatine, L. Wax in coral mucus: Energy transfer from corals to reef fishes. Limnol. Oceanogr. 19, 810–814 (1974).

    ADS 

    Google Scholar 

  • 54.

    Verla, A. W., Enyoh, C. E., Verla, E. N. & Nwarnorh, K. O. Microplastic–toxic chemical interaction: A review study on quantified levels, mechanism and implication. SN Appl. Sci. 1, 1–30 (2019).

    CAS 

    Google Scholar 

  • 55.

    Brown, B. E. & Bythell, J. C. Perspectives on mucus secretion in reef corals. Mar. Ecol. Prog. Ser. 296, 291–309 (2005).

    CAS 
    ADS 

    Google Scholar 

  • 56.

    Weber, M., Lott, C. & Fabricius, K. E. Sedimentation stress in a scleractinian coral exposed to terrestrial and marine sediments with contrasting physical, organic and geochemical properties. J. Exp. Mar. Bio. Ecol. 336, 18–32 (2006).

    CAS 

    Google Scholar 

  • 57.

    Riegl, B. & Branch, G. Effects of sediment on the energy budgets of four scleractinian (Bourne 1900) and five alcyonacean (Lamoroux 1816) corals. J. Exp. Mar. Bio. Ecol. 186, 259–275 (1995).

    Google Scholar 

  • 58.

    Felsing, S. et al. A new approach in separating microplastics from environmental samples based on their electrostatic behavior. Environ. Pollut. 234, 20–28 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 59.

    Bessell-Browne, P., Negri, A. P., Fisher, R., Clode, P. L. & Jones, R. Cumulative impacts: Thermally bleached corals have reduced capacity to clear deposited sediment. Sci. Rep. 7, 1–14 (2017).

    Google Scholar 

  • 60.

    Fitt, W. K. et al. Response of two species of Indo-Pacific corals, Porites cylindrica and Stylophora pistillata, to short-term thermal stress: The host does matter in determining the tolerance of corals to bleaching. J. Exp. Mar. Bio. Ecol. 373, 102–110 (2009).

    Google Scholar 

  • 61.

    Weber, M. et al. Mechanisms of damage to corals exposed to sedimentation. Proc. Natl. Acad. Sci. USA. 109, E1558 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 62.

    Lear, G. et al. Plastics and the microbiome: Impacts and solutions. Environ. Microbiomes 16, 1–19 (2021).

    Google Scholar 

  • 63.

    Palardy, J., Rodrigues, L. & Grottolli, A. The importance of zooplankton to the daily metabolic carbon requirements of healthy and bleached corals at two depths. J. Exp. Mar. Bio. Ecol. 367, 180–188 (2008).

    CAS 

    Google Scholar 

  • 64.

    Jennings, H. Modifiability in behaviour, 1: Behavior of sea anemones. J. Exp. Zool. 4, 447–632 (1905).

    Google Scholar 

  • 65.

    Boschma, H. On the feeding reactions and digestion in the coral polyp Astrangia danae, with notes on its symbiosis with zooxanthellae. Biol. Bull. 49, 407–439 (1925).

    CAS 

    Google Scholar 

  • 66.

    Anthony, K. R. N. Coral suspension feeding on fine particulate matter. J. Exp. Mar. Bio. Ecol. 232, 85–106 (1999).

    Google Scholar 

  • 67.

    Schlekat, C., McGee, B. & Reinharz, E. Testing sediment toxicity in chesapeake bay with the amphipod Leptocheirus plumulosus: An evaluation. Environ. Toxicol. Chem. 11, 225–236 (1992).

    CAS 

    Google Scholar 

  • 68.

    Nie, H., Wang, J., Xu, K., Huang, Y. & Yan, M. Microplastic pollution in water and fish samples around Nanxun Reef in Nansha Islands, South China Sea. Sci. Total Environ. 696, 134022 (2019).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 69.

    Cai, M. et al. Lost but can’t be neglected: Huge quantities of small microplastics hide in the South China Sea. Sci. Total Environ. 633, 1206–1216 (2018).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 70.

    Zhu, L. et al. Microplastic pollution in North Yellow Sea, China: Observations on occurrence, distribution and identification. Sci. Total Environ. 636, 20–29 (2018).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 71.

    Saliu, F. et al. Microplastic and charred microplastic in the Faafu Atoll, Maldives. Mar. Pollut. Bull. 136, 464–471 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 72.

    Saliu, F., Montano, S., Leoni, B., Lasagni, M. & Galli, P. Microplastics as a threat to coral reef environments: Detection of phthalate esters in neuston and scleractinian corals from the Faafu Atoll, Maldives. Mar. Pollut. Bull. 142, 234–241 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 73.

    Bessa, F. et al. Occurrence of microplastics in commercial fish from a natural estuarine environment. Mar. Pollut. Bull. 128, 575–584 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 74.

    Ivar Do Sul, J. A. & Costa, M. F. The present and future of microplastic pollution in the marine environment. Environ. Pollut. 185, 352–364 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 75.

    Chubarenko, I., Bagaev, A., Zobkov, M. & Esiukova, E. On some physical and dynamical properties of microplastic particles in marine environment. Mar. Pollut. Bull. 108, 105–112 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 76.

    Tang, J. et al. Differential enrichment and physiological impacts of ingested microplastics in scleractinian corals in situ. J. Hazard. Mater. 404, 124205 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 77.

    Harrison, J. P., Schratzberger, M., Sapp, M. & Osborn, A. M. Rapid bacterial colonization of low-density polyethylene microplastics in coastal sediment microcosms. BMC Microbiol. 14, 1–15 (2014).

    Google Scholar 

  • 78.

    Veron, J. Corals of the World (2000).

  • 79.

    Benavides, M. et al. Diazotrophs: A non-negligible source of nitrogen for the tropical coral Stylophora pistillata. J. Exp. Biol. 219, 2608–2612 (2016).

    PubMed 

    Google Scholar 

  • 80.

    Einbinder, S. et al. Changes in morphology and diet of the coral Stylophora pistillata along a depth gradient. Mar. Ecol. Prog. Ser. 381, 167–174 (2009).

    ADS 

    Google Scholar 

  • 81.

    Erni-Cassola, G., Gibson, M. I., Thompson, R. C. & Christie-Oleza, J. A. Lost, but found with Nile red: A novel method for detecting and quantifying small microplastics (1 mm to 20 μm) in environmental samples. Environ. Sci. Technol. 51, 13641–13648 (2017).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 82.

    Swain, T. D., Schellinger, J. L., Strimaitis, A. M. & Reuter, K. E. Evolution of anthozoan polyp retraction mechanisms: Convergent functional morphology and evolutionary allometry of the marginal musculature in order Zoanthidea (Cnidaria: Anthozoa: Hexacorallia). BMC Evol. Biol. 15, 1–19 (2015).

    Google Scholar 

  • 83.

    Laissue, P. P., Gu, Y., Qian, C. & Smith, D. J. Light-induced polyp retraction and tissue rupture in the photosensitive, reef-building coral Acropora muricata. bioRxiv https://doi.org/10.1101/862045 (2019).

    Article 

    Google Scholar 

  • 84.

    Renegar, D. A. & Turner, N. R. Species sensitivity assessment of five Atlantic scleractinian coral species to 1-methylnaphthalene. Sci. Rep. 11, 1–17 (2021).

    Google Scholar 

  • 85.

    Armoza-Zvuloni, R., Schneider, A., Sher, D. & Shaked, Y. Rapid Hydrogen Peroxide release from the coral Stylophora pistillata during feeding and in response to chemical and physical stimuli. Sci. Rep. 6, 1–10 (2016).

    Google Scholar 

  • 86.

    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 87.

    Meijering, E., Dzyubachyck, O. & Smal, I. Methods for cell and particle tracking. In Methods in Enzymology (Elsevier, 2012).

  • 88.

    Sorgeloos, P., Dhert, P. & Candrevab, P. Use of the brine shrimp, Artemia spp., in marine fish larviculture. Aquaculture 200, 147–159 (2001).

    Google Scholar 

  • 89.

    R Core Team. R: A language and environment for statistical computing (2019).

  • 90.

    Wood, A. S., Scheipl, F. & Wood, M. S. Package ‘gamm4’. (2020).

  • 91.

    Zuur, A., Saveliev, A. & Ieno, E. A Beginner’s Guide to Generalized Additive Mixed Models with R. (Highland Statistics Ltd, 2014).

  • 92.

    Zuur, A. F., Hilbe, J. M. & Ieno, E. N. A Beginner’s Guide to GLM and GLMM with R (Highland Statistics Ltd, 2013).

  • 93.

    Pyke, A. & Thompson, J. Statistical analysis of survival and removal rate experiments. Ecology 67, 240–245 (1986).

    Google Scholar 

  • 94.

    Therneau, T. M. Mixed effects cox models. R-Package Description. https://doi.org/10.1111/oik.01149 (2015).

    Article 

    Google Scholar 

  • 95.

    Katki, H. A. & Mark, S. D. Survival analysis of studies nested within cohorts using the NestedCohort Package. 1–16 (2013).

  • 96.

    Bürkner, P. C. Advanced Bayesian multilevel modeling with the R package BRMS. R J. 10, 395–411 (2018).

    Google Scholar 

  • 97.

    Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R. (Springer, 2009).

  • 98.

    Manly, B. F. J. Measuring selectivity from multiple choice feeding-preference experiments. Biometrics 51, 709 (1995).

    Google Scholar 

  • 99.

    Richardson, J. Package ‘ selectapref ’. Anal. F. Lab. Foraging 8–11 (2020).


  • Source: Ecology - nature.com

    Shifting baselines and biodiversity success stories

    Syntax errors do not disrupt acoustic communication in the common cuckoo