in

Physiological acclimatization in Hawaiian corals following a 22-month shift in baseline seawater temperature and pH

[adace-ad id="91168"]
  • Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science (80- ). 359, 80–83 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Eakin, C. M., Sweatman, H. P. A. & Brainard, R. E. The 2014–2017 global-scale coral bleaching event: Insights and impacts. Coral Reefs 38, 539–545 (2019).

    ADS 

    Google Scholar 

  • Glynn. Coral reef bleaching: Facts, hypotheses and implications. Glob. Chang. Biol. 2, 495–509 (1996).

    ADS 

    Google Scholar 

  • Brown, B. E. Coral bleaching: Causes and consequences. Coral Reefs 16, 129–138 (1997).

    Google Scholar 

  • Maynard, J. A. et al. Projections of climate conditions that increase coral disease susceptibility and pathogen abundance and virulence. Nat. Clim. Chang. 5, 688–694 (2015).

    ADS 

    Google Scholar 

  • Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Anthony, K. R. N., Kline, D. I., Diaz-Pulido, G., Dove, S. & Hoegh-Guldberg, O. Ocean acidification causes bleaching and productivity loss in coral reef builders. Proc. Natl. Acad. Sci. U. S. A. 105, 17442–17446 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, H. et al. Positive and negative responses of coral calcification to elevated pCO2: Case studies of two coral species and the implications of their responses. Mar. Ecol. Prog. Ser. 502, 145–156 (2014).

    ADS 
    CAS 

    Google Scholar 

  • Hoadley, K. D. et al. Physiological response to elevated temperature and pCO2 varies across four Pacific coral species: Understanding the unique host + symbiont response. Sci. Rep. 5, 1–15 (2015).

    Google Scholar 

  • Schoepf, V. et al. Coral energy reserves and calcification in a high-CO2 world at two temperatures. PLoS One. 8, e75049 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • IPCC. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, (eds. Pörtner, H.-O. et al.) 1–36 (Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2019).

  • Bahr, K. D., Jokiel, P. L. & Rodgers, K. S. Relative sensitivity of five Hawaiian coral species to high temperature under high-pCO2 conditions. Coral Reefs 35, 729–738 (2016).

    ADS 

    Google Scholar 

  • Dove, S. G., Brown, K. T., Van Den Heuvel, A., Chai, A. & Hoegh-Guldberg, O. Ocean warming and acidification uncouple calcification from calcifier biomass which accelerates coral reef decline. Commun. Earth Environ. 1, 1–9 (2020).

    Google Scholar 

  • Chow, M. H., Tsang, R. H. L., Lam, E. K. Y. & Ang, P. O. Quantifying the degree of coral bleaching using digital photographic technique. J. Exp. Mar. Bio. Ecol. 479, 60–68 (2016).

    Google Scholar 

  • Amid, C. et al. Additive effects of the herbicide glyphosate and elevated temperature on the branched coral Acropora formosa in Nha Trang, Vietnam. Environ. Sci. Pollut. Res. 25, 13360–13372 (2018).

    CAS 

    Google Scholar 

  • Anthony, K. R. N., Connolly, S. R. & Willis, B. L. Comparative analysis of energy allocation to tissue and skeletal growth in corals. Limnol. Oceanogr. 47, 1417–1429 (2002).

    ADS 

    Google Scholar 

  • Edmunds, P. J. & Davies, P. S. An energy budget for Porites porites (Scleractinia). Mar. Biol. 92, 339–347 (1986).

    Google Scholar 

  • Stimson, J. S. Location, quantity and rate of change in quantity of lipids in tissue of Hawaiian hermatypic corals. Bull. Mar. Sci. 41, 889–904 (1987).

    ADS 

    Google Scholar 

  • Harland, A. D., Navarro, J. C., Spencer Davies, P. & Fixter, L. M. Lipids of some Caribbean and Red Sea corals: Total lipid, wax esters, triglycerides and fatty acids. Mar. Biol. 117, 113–117 (1993).

    CAS 

    Google Scholar 

  • Grottoli, A. G., Tchernov, D. & Winters, G. Physiological and biogeochemical responses of super-corals to thermal stress from the northern gulf of Aqaba, Red Sea. Front. Mar. Sci. 4, 1–12 (2017).

    Google Scholar 

  • Rodrigues, L. J. & Grottoli, A. G. Energy reserves and metabolism as indicators of coral recovery from bleaching. Limnol. Oceanogr. 52, 1874–1882 (2007).

    ADS 

    Google Scholar 

  • Anthony, K. R. N., Hoogenboom, M. O., Maynard, J. A., Grottoli, A. G. & Middlebrook, R. Energetics approach to predicting mortality risk from environmental stress: A case study of coral bleaching. Funct. Ecol. 23, 539–550 (2009).

    Google Scholar 

  • Baumann, J. H., Grottoli, A. G., Hughes, A. D. & Matsui, Y. Photoautotrophic and heterotrophic carbon in bleached and non-bleached coral lipid acquisition and storage. J. Exp. Mar. Bio. Ecol. 461, 469–478 (2014).

    CAS 

    Google Scholar 

  • Hughes, A. D. & Grottoli, A. G. Heterotrophic compensation: A possible mechanism for resilience of coral reefs to global warming or a sign of prolonged stress?. PLoS ONE 8, 1–10 (2013).

    Google Scholar 

  • Grottoli, A. G. et al. The cumulative impact of annual coral bleaching can turn some coral species winners into losers. Glob. Chang. Biol. 20, 3823–3833 (2014).

    ADS 
    PubMed 

    Google Scholar 

  • Grottoli, A. G., Rodrigues, L. J. & Palardy, J. E. Heterotrophic plasticity and resilience in bleached corals. Nature 440, 1186–1189 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Levas, S. J. et al. Can heterotrophic uptake of dissolved organic carbon and zooplankton mitigate carbon budget deficits in annually bleached corals?. Coral Reefs 35, 495–506 (2016).

    ADS 

    Google Scholar 

  • Jury, C. P., Delano, M. N. & Toonen, R. J. High heritability of coral calcification rates and evolutionary potential under ocean acidification. Sci. Rep. 9, 1–13 (2019).

    Google Scholar 

  • Jury, C. P. & Toonen, R. J. Adaptive responses and local stressor mitigation drive coral resilience in warmer, more acidic oceans. Proc. R. Soc. B Biol. Sci. 286, 20190614 (2019).

    Google Scholar 

  • Concepcion, G. T., Polato, N. R., Baums, I. B. & Toonen, R. J. Development of microsatellite markers from four Hawaiian corals: Acropora cytherea, Fungia scutaria, Montipora capitata and Porites lobata. Conserv. Genet. Resour. 2, 11–15 (2010).

    Google Scholar 

  • Gorospe, K. D. & Karl, S. A. Genetic relatedness does not retain spatial pattern across multiple spatial scales: Dispersal and colonization in the coral, Pocillopora damicornis. Mol. Ecol. 22, 3721–3736 (2013).

    PubMed 

    Google Scholar 

  • Wall, C. B., Ritson-Williams, R., Popp, B. N. & Gates, R. D. Spatial variation in the biochemical and isotopic composition of corals during bleaching and recovery. Limnol. Oceanogr. 64, 2011–2028 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bahr, K. D., Tran, T., Jury, C. P. & Toonen, R. J. Abundance, size, and survival of recruits of the reef coral Pocillopora acuta under ocean warming and acidification. PLoS ONE 15, 1–13 (2020).

    Google Scholar 

  • Rogelj, J. et al. Paris agreement climate proposals need a boost to keep warming well below 2 °C. Nature 534, 631–639 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • McLachlan, R. H., Price, J. T., Solomon, S. L. & Grottoli, A. G. Thirty years of coral heat-stress experiments: A review of methods. Coral Reefs 39, 885–902 (2020).

    Google Scholar 

  • Grottoli, A. G. et al. Increasing comparability among coral bleaching experiments. Ecol. Appl. 31, e02262 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Grottoli, A. G. Variability of stable isotopes and maximum linear extension in reef-coral skeletons at Kaneohe Bay, Hawaii. Mar. Biol. 135, 437–449 (1999).

    Google Scholar 

  • McLachlan, R. H., Dobson, K. L., Grottoli, A. G. Quantification of Total Biomass in Ground Coral Samples. Protocols.io (2020). https://doi.org/10.17504/protocols.io.bdyai7se.

  • McLachlan, R. H., Muñoz-Garcia, A., Grottoli, A. G. Extraction of Total Soluble Lipid from Ground Coral Samples. Protocols.io (2020). https://doi.org/10.17504/protocols.io.bc4qiyvw.

  • McLachlan, R. H., Price, J. T., Dobson, K. L., Weisleder, N. & Grottoli, A. G. Microplate Assay for Quantification of Soluble Protein in Ground Coral Samples. Protocols.io (2020). https://doi.org/10.17504/protocols.io.bdc8i2zw.

  • McLachlan, R. H., Juracka, C. & Grottoli, A. G. Symbiodiniaceae Enumeration in Ground Coral Samples Using Countess™ II FL Automated Cell Counter. Protocols.io (2020). https://doi.org/10.17504/protocols.io.bdc5i2y6.

  • McLachlan, R. H. & Grottoli, A. G. Geometric Method for Estimating Coral Surface Area Using Image Analysis. Protocols.io https://doi.org/10.17504/protocols.io.bdyai7se(2021).

  • Muscatine, L., McCloskey, L. R. & Marian, R. E. Estimating the daily contribution of carbon from zooxanthellae to coral animal respiration. Limnol. Oceanogr. 26, 601–611 (1981).

    ADS 
    CAS 

    Google Scholar 

  • Levas, S. J. et al. Organic carbon fluxes mediated by corals at elevated pCO2 and temperature. Mar. Ecol. Prog. Ser. 519, 153–164 (2015).

    ADS 
    CAS 

    Google Scholar 

  • Perry, C. T. et al. Loss of coral reef growth capacity to track future increases in sea level. Nature 558, 396–400 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Woodley, C. M., Burnett, A. & Downs, C. A. Epidemiological Assessment of Reproductive Condition of ESA Priority Coral (2013).

  • Logan, C. A., Dunne, J. P., Eakin, C. M. & Donner, S. D. Incorporating adaptive responses into future projections of coral bleaching. Glob. Chang. Biol. 20, 125–139 (2014).

    ADS 
    PubMed 

    Google Scholar 

  • Rodrigues, L. J., Grottoli, A. G. & Lesser, M. P. Long-term changes in the chlorophyll fluorescence of bleached and recovering corals from Hawaii. J. Exp. Biol. 211, 2502–2509 (2008).

    PubMed 

    Google Scholar 

  • Rowan, H. et al. Environmental gradients drive physiological variation in Hawaiian corals. Coral Reefs 40(5), 1505–1523. https://doi.org/10.1007/s00338-021-02140-8 (2021).

    Article 

    Google Scholar 

  • Houlbrèque, F. & Ferrier-Pagès, C. Heterotrophy in tropical scleractinian corals. Biol. Rev. 84, 1–17 (2009).

    PubMed 

    Google Scholar 

  • J. T. Price, thesis, The Ohio State University (2020).


  • Source: Ecology - nature.com

    Using soap to remove micropollutants from water

    Study: Ice flow is more sensitive to stress than previously thought