in

Plant phenology changes and drivers on the Qinghai–Tibetan Plateau

[adace-ad id="91168"]
  • Lieth, H. Phenology and Seasonality Modeling Vol. 8 (Springer, 2013).

  • Piao, S. et al. Plant phenology and global climate change: current progresses and challenges. Glob. Change Biol. 25, 1922–1940 (2019).

    Article 

    Google Scholar 

  • Shen, M. et al. Can changes in autumn phenology facilitate earlier green-up date of northern vegetation? Agric. For. Meteorol. 291, 108077 (2020).

    Article 

    Google Scholar 

  • Menzel, A. et al. Climate change fingerprints in recent European plant phenology. Glob. Change Biol. 26, 2599–2612 (2020).

    Article 

    Google Scholar 

  • Shen, X. et al. Asymmetric effects of daytime and nighttime warming on spring phenology in the temperate grasslands of China. Agric. For. Meteorol. 259, 240–249 (2018).

    Article 

    Google Scholar 

  • Rudolf, V. H. W. The role of seasonal timing and phenological shifts for species coexistence. Ecol. Lett. 22, 1324–1338 (2019).

    Google Scholar 

  • Zhu, J., Zhang, Y. & Wang, W. Interactions between warming and soil moisture increase overlap in reproductive phenology among species in an alpine meadow. Biol. Lett. 12, 20150749 (2016).

    Article 

    Google Scholar 

  • Chen, J. et al. Plants with lengthened phenophases increase their dominance under warming in an alpine plant community. Sci. Total Environ. 728, 138891 (2020).

    Article 

    Google Scholar 

  • Lian, X. et al. Summer soil drying exacerbated by earlier spring greening of northern vegetation. Sci. Adv. 6, eaax0255 (2020).

    Article 

    Google Scholar 

  • Wolkovich, E. M. & Donahue, M. J. How phenological tracking shapes species and communities in non-stationary environments. Biol. Rev. Camb. Philos. Soc. 96, 2810–2827 (2021).

    Article 

    Google Scholar 

  • Xu, X., Riley, W. J., Koven, C. D., Jia, G. & Zhang, X. Earlier leaf-out warms air in the north. Nat. Clim. Chang. 10, 370–375 (2020).

    Article 

    Google Scholar 

  • D’Amato, G. et al. The effects of climate change on respiratory allergy and asthma induced by pollen and mold allergens. Allergy 75, 2219–2228 (2020).

    Article 

    Google Scholar 

  • Garcia-Mozo, H. Poaceae pollen as the leading aeroallergen worldwide: a review. Allergy 72, 1849–1858 (2017).

    Article 

    Google Scholar 

  • Ge, Q., Dai, J., Liu, J., Zhong, S. & Liu, H. The effect of climate change on the fall foliage vacation in China. Tour. Manag. 38, 80–84 (2013).

    Article 

    Google Scholar 

  • Liu, J., Cheng, H., Jiang, D. & Huang, L. Impact of climate-related changes to the timing of autumn foliage colouration on tourism in Japan. Tour. Manag. 70, 262–272 (2019).

    Article 

    Google Scholar 

  • Fan, B. et al. Earlier vegetation green-up has reduced spring dust storms. Sci. Rep. 4, 6749 (2014).

    Article 

    Google Scholar 

  • Minoli, S. et al. Global response patterns of major rainfed crops to adaptation by maintaining current growing periods and irrigation. Earths Future 7, 1464–1480 (2019).

    Article 

    Google Scholar 

  • Shen, M. et al. Plant phenological responses to climate change on the Tibetan Plateau: research status and challenges. Natl Sci. Rev. 22, 454–467 (2015).

    Article 

    Google Scholar 

  • You, Q., Wang, D., Jiang, Z. & Kang, S. Diurnal temperature range in CMIP5 models and observations on the Tibetan Plateau. Q. J. R. Meteorol. Soc. 143, 1978–1989 (2017).

    Article 

    Google Scholar 

  • You, Q. et al. Temperature dataset of CMIP6 models over China: evaluation, trend and uncertainty. Clim. Dyn. 57, 17–35 (2021).

    Article 

    Google Scholar 

  • Zhu, Y.-Y. & Yang, S. Evaluation of CMIP6 for historical temperature and precipitation over the Tibetan Plateau and its comparison with CMIP5. Adv. Clim. Change Res. 11, 239–251 (2020).

    Article 

    Google Scholar 

  • Lun, Y. et al. Assessment of GCMs simulation performance for precipitation and temperature from CMIP5 to CMIP6 over the Tibetan Plateau. Int. J. Climatol. 41, 3994–4018 (2021).

    Article 

    Google Scholar 

  • Song, L., Zhuang, Q., Yin, Y., Wu, S. & Zhu, X. Intercomparison of model-estimated potential evapotranspiration on the Tibetan Plateau during 1981–2010. Earth Interact. 21, 1–22 (2017).

    Article 

    Google Scholar 

  • You, Q., Min, J. & Kang, S. Rapid warming in the Tibetan Plateau from observations and CMIP5 models in recent decades. Int. J. Climatol. 36, 2660–2670 (2016).

    Article 

    Google Scholar 

  • He, J.-S. et al. Above-belowground interactions in alpine ecosystems on the roof of the world. Plant Soil 458, 1–6 (2020).

    Article 

    Google Scholar 

  • Kuang, X. & Jiao, J. J. Review on climate change on the Tibetan Plateau during the last half century. J. Geophys. Res. Atmos. 121, 3979–4007 (2016).

    Article 

    Google Scholar 

  • Shen, M., Piao, S., Cong, N., Zhang, G. & Jassens, I. A. Precipitation impacts on vegetation spring phenology on the Tibetan Plateau. Glob. Change Biol. 21, 3647–3656 (2015).

    Article 

    Google Scholar 

  • Shen, M., Tang, Y., Chen, J., Zhu, X. & Zheng, Y. Influences of temperature and precipitation before the growing season on spring phenology in grasslands of the central and eastern Qinghai-Tibetan Plateau. Agric. For. Meteorol. 151, 1711–1722 (2011).

    Article 

    Google Scholar 

  • Ganjurjav, H. et al. Warming and precipitation addition interact to affect plant spring phenology in alpine meadows on the central Qinghai-Tibetan Plateau. Agric. For. Meteorol. 287, 107943 (2020).

    Article 

    Google Scholar 

  • Peng, J., Wu, C., Wang, X. & Lu, L. Spring phenology outweighed climate change in determining autumn phenology on the Tibetan Plateau. Int. J. Climatol. 41, 3725–3742 (2021).

    Article 

    Google Scholar 

  • Chen, X., An, S., Inouye, D. W. & Schwartz, M. D. Temperature and snowfall trigger alpine vegetation green-up on the world’s roof. Glob. Change Biol. 21, 3635–3646 (2015).

    Article 

    Google Scholar 

  • Zheng, Z. et al. Continuous but diverse advancement of spring-summer phenology in response to climate warming across the Qinghai-Tibetan Plateau. Agric. For. Meteorol. 223, 194–202 (2016).

    Article 

    Google Scholar 

  • Zhu, W. et al. Divergent shifts and responses of plant autumn phenology to climate change on the Qinghai-Tibetan Plateau. Agric. For. Meteorol. 239, 166–175 (2017).

    Article 

    Google Scholar 

  • Sun, Q., Li, B., Jiang, Y., Chen, X. & Zhou, G. Declined trend in herbaceous plant green-up dates on the Qinghai–Tibetan Plateau caused by spring warming slowdown. Sci. Total Environ. 772, 145039 (2021).

    Article 

    Google Scholar 

  • Sun, Q., Li, B., Zhou, G., Jiang, Y. & Yuan, Y. Delayed autumn leaf senescence date prolongs the growing season length of herbaceous plants on the Qinghai–Tibetan Plateau. Agric. For. Meteorol. 284, 107896 (2020).

    Article 

    Google Scholar 

  • Jiang, Y. et al. Divergent shifts in flowering phenology of herbaceous plants on the warming Qinghai–Tibetan plateau. Agric. For. Meteorol. 307, 108502 (2021).

    Article 

    Google Scholar 

  • Cong, N., Shen, M. & Piao, S. Spatial variations in responses of vegetation autumn phenology to climate change on the Tibetan Plateau. J. Plant Ecol. 10, 744–752 (2016).

    Google Scholar 

  • Shi, C. et al. Effects of warming on chlorophyll degradation and carbohydrate accumulation of Alpine herbaceous species during plant senescence on the Tibetan Plateau. PLoS ONE 9, e107874 (2014).

    Article 

    Google Scholar 

  • Morisette, J. T. et al. Tracking the rhythm of the seasons in the face of global change: phenological research in the 21st century. Front. Ecol. Environ. 7, 253–260 (2009).

    Article 

    Google Scholar 

  • Kharouba, H. M. et al. Global shifts in the phenological synchrony of species interactions over recent decades. Proc. Natl Acad. Sci. USA 115, 5211–5216 (2018).

    Article 

    Google Scholar 

  • Vitasse, Y. et al. Phenological and elevational shifts of plants, animals and fungi under climate change in the European Alps. Biol. Rev. Camb. Philos. Soc. 96, 1816–1835 (2021).

    Article 

    Google Scholar 

  • Richardson, A. D. et al. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric. For. Meteorol. 169, 156–173 (2013).

    Article 

    Google Scholar 

  • Keenan, T. F. et al. Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nat. Clim. Chang. 4, 598–604 (2014).

    Article 

    Google Scholar 

  • Estiarte, M. & Penuelas, J. Alteration of the phenology of leaf senescence and fall in winter deciduous species by climate change: effects on nutrient proficiency. Glob. Change Biol. 21, 1005–1017 (2015).

    Article 

    Google Scholar 

  • Penuelas, J., Rutishauser, T. & Filella, I. Ecology. Phenology feedbacks on climate change. Science 324, 887–888 (2009).

    Article 

    Google Scholar 

  • Piao, S. et al. Weakening temperature control on the interannual variations of spring carbon uptake across northern lands. Nat. Clim. Chang. 7, 359–363 (2017).

    Article 

    Google Scholar 

  • Ran, Y., Li, X. & Cheng, G. Climate warming over the past half century has led to thermal degradation of permafrost on the Qinghai–Tibet Plateau. Cryosphere 12, 595–608 (2018).

    Article 

    Google Scholar 

  • Gao, T. et al. Accelerating permafrost collapse on the eastern Tibetan Plateau. Environ. Res. Lett. 16, 054023 (2021).

    Article 

    Google Scholar 

  • Sun, R. et al. Interannual variability of the North Pacific mixed layer associated with the spring Tibetan Plateau thermal forcing. J. Clim. 32, 3109–3130 (2019).

    Article 

    Google Scholar 

  • Zhang, J., Wu, L., Huang, G., Zhu, W. & Zhang, Y. The role of May vegetation greenness on the southeastern Tibetan Plateau for East Asian summer monsoon prediction. J. Geophys. Res. Atmos. 116, D05106 (2011).

    Article 

    Google Scholar 

  • Wu, G. et al. Tibetan Plateau climate dynamics: recent research progress and outlook. Natl Sci. Rev. 2, 100–116 (2015).

    Article 

    Google Scholar 

  • Wang, Y., Zhao, P., Yu, R. & Rasul, G. Inter-decadal variability of Tibetan spring vegetation and its associations with eastern China spring rainfall. Int. J. Climatol. 30, 856–865 (2010).

    Article 

    Google Scholar 

  • Yu, H., Luedeling, E. & Xu, J. Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. Proc. Natl Acad. Sci. USA 107, 22151–22156 (2010).

    Article 

    Google Scholar 

  • Shen, M. et al. Increasing altitudinal gradient of spring vegetation phenology during the last decade on the Qinghai–Tibetan Plateau. Agric. For. Meteorol. 189-190, 71–80 (2014).

    Article 

    Google Scholar 

  • Wang, X. et al. No consistent evidence for advancing or delaying trends in spring phenology on the Tibetan Plateau. J. Geophys. Res. Biogeosci. 122, 3288–3305 (2017).

    Article 

    Google Scholar 

  • Wang, C. et al. Assessing phenological change and climatic control of alpine grasslands in the Tibetan Plateau with MODIS time series. Int. J. Biometeorol. 59, 11–23 (2015).

    Article 

    Google Scholar 

  • Wang, K. et al. Snow effects on alpine vegetation in the Qinghai-Tibetan Plateau. Int. J. Digit. Earth 8, 58–75 (2013).

    Article 

    Google Scholar 

  • Meng, F., Huang, L., Chen, A., Zhang, Y. & Piao, S. Spring and autumn phenology across the Tibetan Plateau inferred from normalized difference vegetation index and solar-induced chlorophyll fluorescence. Big Earth Data 5, 182–200 (2021).

    Article 

    Google Scholar 

  • Wang, X., Wu, C., Peng, D., Gonsamo, A. & Liu, Z. Snow cover phenology affects alpine vegetation growth dynamics on the Tibetan Plateau: satellite observed evidence, impacts of different biomes, and climate drivers. Agric. For. Meteorol. 256–257, 61–74 (2018).

    Article 

    Google Scholar 

  • Li, P. et al. Change in autumn vegetation phenology and the climate controls from 1982 to 2012 on the Qinghai–Tibet Plateau. Front. Plant Sci. 10, 1677 (2019).

    Article 

    Google Scholar 

  • Zhu, W., Zheng, Z., Jiang, N. & Zhang, D. A comparative analysis of the spatio-temporal variation in the phenologies of two herbaceous species and associated climatic driving factors on the Tibetan Plateau. Agric. For. Meteorol. 248, 177–184 (2018).

    Article 

    Google Scholar 

  • Xia, J. et al. Interannual variation in the start of vegetation growing season and its response to climate change in the Qinghai–Tibet Plateau derived from MODIS data during 2001 to 2016. J. Appl. Remote Sens. 13, 048506 (2019).

    Article 

    Google Scholar 

  • Huang, K. et al. Impacts of snow cover duration on vegetation spring phenology over the Tibetan Plateau. J. Plant Ecol. 12, 583–592 (2019).

    Article 

    Google Scholar 

  • Li, P. et al. Dynamics of vegetation autumn phenology and its response to multiple environmental factors from 1982 to 2012 on Qinghai-Tibetan Plateau in China. Sci. Total Environ. 637-638, 855–864 (2018).

    Article 

    Google Scholar 

  • Liu, X. et al. Driving forces of the changes in vegetation phenology in the Qinghai–Tibet Plateau. Remote Sens. 13, 4952 (2021).

    Article 

    Google Scholar 

  • Piao, S. et al. Altitude and temperature dependence of change in the spring vegetation green-up date from 1982 to 2006 in the Qinghai–Xizang Plateau. Agric. For. Meteorol. 151, 1599–1608 (2011).

    Article 

    Google Scholar 

  • Wang, Z. et al. Causes for the unimodal pattern of biomass and productivity in alpine grasslands along a large altitudinal gradient in semi-arid regions. J. Veg. Sci. 24, 189–201 (2013).

    Article 

    Google Scholar 

  • Du, M. et al. in Proc. MODSIM 2007 Int. Congr. Model. Simul. (eds Oxley, L. & Kulasiri, D.) 2146–2152 (Modelling and Simulation Society of Australia and New Zealand, 2007).

  • Wang, S. P. et al. Asymmetric sensitivity of first flowering date to warming and cooling in alpine plants. Ecology 95, 3387–3398 (2014).

    Article 

    Google Scholar 

  • Che, M. et al. Spatial and temporal variations in the end date of the vegetation growing season throughout the Qinghai–Tibetan Plateau from 1982 to 2011. Agric. For. Meteorol. 189–190, 81–90 (2014).

    Article 

    Google Scholar 

  • Zhang, G., Zhang, Y., Dong, J. & Xiao, X. Green-up dates in the Tibetan Plateau have continuously advanced from 1982 to 2011. Proc. Natl Acad. Sci. USA 110, 4309–4314 (2013).

    Article 

    Google Scholar 

  • Maisongrande, P., Duchemin, B. & Dedieu, G. VEGETATION/SPOT: an operational mission for the Earth monitoring; presentation of new standard products. Int. J. Remote Sens. 25, 9–14 (2010).

    Article 

    Google Scholar 

  • Didan, K., Munoz, A. B., Solano, R. & Huete, A. MODIS vegetation index user’s guide (MOD13 series) version 3.00, June 2015 (collection 6) (Univ. Arizona, 2015).

  • Beck, H. E. et al. Global evaluation of four AVHRR–NDVI data sets: intercomparison and assessment against Landsat imagery. Remote Sens. Environ. 115, 2547–2563 (2011).

    Article 

    Google Scholar 

  • Zhang, Y., Song, C., Band, L. E., Sun, G. & Li, J. Reanalysis of global terrestrial vegetation trends from MODIS products: browning or greening? Remote Sens. Environ. 191, 145–155 (2017).

    Article 

    Google Scholar 

  • Zhang, Y., Joiner, J., Alemohammad, S. H., Zhou, S. & Gentine, P. A global spatially contiguous solar-induced fluorescence (CSIF) dataset using neural networks. Biogeosciences 15, 5779–5800 (2018).

    Article 

    Google Scholar 

  • Ding, M. et al. Temperature dependence of variations in the end of the growing season from 1982 to 2012 on the Qinghai–Tibetan Plateau. GISci. Remote Sens. 53, 147–163 (2015).

    Article 

    Google Scholar 

  • Cheng, M., Jin, J. & Jiang, H. Strong impacts of autumn phenology on grassland ecosystem water use efficiency on the Tibetan Plateau. Ecol. Indic. 126, 107682 (2021).

    Article 

    Google Scholar 

  • Pedelty, J. et al. in Proc. 2007 IEEE Int. Geosci. Remote Sensing Symp. 1021–1025 (IEEE, 2007).

  • Pinzon, J. & Tucker, C. A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote Sens. 6, 6929–6960 (2014).

    Article 

    Google Scholar 

  • Liu, Y., Liu, R. & Chen, J. M. Retrospective retrieval of long-term consistent global leaf area index (1981–2011) from combined AVHRR and MODIS data. J. Geophys. Res. Biogeosci. 117, G04003 (2012).

    Article 

    Google Scholar 

  • Yang, B. et al. New perspective on spring vegetation phenology and global climate change based on Tibetan Plateau tree-ring data. Proc. Natl Acad. Sci. USA 114, 6966–6971 (2017).

    Article 

    Google Scholar 

  • Shishov, V. V. et al. VS-oscilloscope: a new tool to parameterize tree radial growth based on climate conditions. Dendrochronologia 39, 42–50 (2016).

    Article 

    Google Scholar 

  • Zhao, Y., Zhou, T., Zhang, W. & Li, J. Change in precipitation over the Tibetan Plateau projected by weighted CMIP6 models. Adv. Atmos. Sci. 39, 1133–1150 (2022).

    Article 

    Google Scholar 

  • Lalande, M., Ménégoz, M., Krinner, G., Naegeli, K. & Wunderle, S. Climate change in the High Mountain Asia in CMIP6. Earth Syst. Dyn. 12, 1061–1098 (2021).

    Article 

    Google Scholar 

  • Jin, Z. et al. Temporal variability in the thermal requirements for vegetation phenology on the Tibetan plateau and its implications for carbon dynamics. Clim. Change 138, 617–632 (2016).

    Article 

    Google Scholar 

  • Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

    Article 

    Google Scholar 

  • Cao, R., Shen, M., Zhou, J. & Chen, J. Modeling vegetation green-up dates across the Tibetan Plateau by including both seasonal and daily temperature and precipitation. Agric. For. Meteorol. 249, 176–186 (2018).

    Article 

    Google Scholar 

  • Li, P. et al. Combined control of multiple extreme climate stressors on autumn vegetation phenology on the Tibetan Plateau under past and future climate change. Agric. For. Meteorol. 308–309, 108571 (2021).

    Article 

    Google Scholar 

  • Lang, W., Chen, X., Qian, S., Liu, G. & Piao, S. A new process-based model for predicting autumn phenology: how is leaf senescence controlled by photoperiod and temperature coupling? Agric. For. Meteorol. 268, 124–135 (2019).

    Article 

    Google Scholar 

  • Yang, Z. et al. Phylogenetic conservatism in heat requirement of leaf-out phenology, rather than temperature sensitivity, in Tibetan Plateau. Agric. For. Meteorol. 304-305, 108413 (2021).

    Article 

    Google Scholar 

  • Gao, B., Li, J. & Wang, X. Impact of frozen soil changes on vegetation phenology in the source region of the Yellow River from 2003 to 2015. Theor. Appl. Climatol. 141, 1219–1234 (2020).

    Article 

    Google Scholar 

  • Jiang, H. et al. The impacts of soil freeze/thaw dynamics on soil water transfer and spring phenology in the Tibetan Plateau. Arct. Antarct. Alp. Res. 50, e1439155 (2018).

    Article 

    Google Scholar 

  • Li, G., Jiang, C., Cheng, T. & Bai, J. Grazing alters the phenology of alpine steppe by changing the surface physical environment on the northeast Qinghai-Tibet Plateau, China. J. Environ. Manage. 248, 109257 (2019).

    Article 

    Google Scholar 

  • Du, J. et al. Interacting effects of temperature and precipitation on climatic sensitivity of spring vegetation green-up in arid mountains of China. Agric. For. Meteorol. 269–270, 71–77 (2019).

    Article 

    Google Scholar 

  • Liu, L. et al. Effects of elevation on spring phenological sensitivity to temperature in Tibetan Plateau grasslands. Chin. Sci. Bull. 59, 4856–4863 (2014).

    Article 

    Google Scholar 

  • Cong, N. et al. Little change in heat requirement for vegetation green-up on the Tibetan Plateau over the warming period of 1998–2012. Agric. For. Meteorol. 232, 650–658 (2017).

    Article 

    Google Scholar 

  • Shen, M. et al. Strong impacts of daily minimum temperature on the green-up date and summer greenness of the Tibetan Plateau. Glob. Change Biol. 22, 3057–3066 (2016).

    Article 

    Google Scholar 

  • Du, J. et al. Daily minimum temperature and precipitation control on spring phenology in arid-mountain ecosystems in China. Int. J. Climatol. 40, 2568–2579 (2020).

    Article 

    Google Scholar 

  • Shen, M. Spring phenology was not consistently related to winter warming on the Tibetan Plateau. Proc. Natl Acad. Sci. USA 108, E91–E92 (2011).

    Article 

    Google Scholar 

  • An, S. et al. Precipitation and minimum temperature are primary climatic controls of alpine grassland autumn phenology on the Qinghai-Tibet Plateau. Remote Sens. 12, 431 (2020).

    Article 

    Google Scholar 

  • Zu, J. et al. Biological and climate factors co-regulated spatial-temporal dynamics of vegetation autumn phenology on the Tibetan Plateau. Int. J. Appl. Earth Obs. Geoinf. 69, 198–205 (2018).

    Google Scholar 

  • Qiao, C. et al. Vegetation phenology in the Qilian mountains and its response to temperature from 1982 to 2014. Remote Sens. 13, 286 (2021).

    Article 

    Google Scholar 

  • Yang, Z. et al. Asymmetric responses of the end of growing season to daily maximum and minimum temperatures on the Tibetan Plateau. J. Geophys. Res. Atmos. 122, 13,78–13,287 (2017).

    Google Scholar 

  • Dorji, T. et al. Plant functional traits mediate reproductive phenology and success in response to experimental warming and snow addition in Tibet. Glob. Change Biol. 19, 459–472 (2013).

    Article 

    Google Scholar 

  • Li, X., Zhang, L. & Luo, T. Rainy season onset mainly drives the spatiotemporal variability of spring vegetation green-up across alpine dry ecosystems on the Tibetan Plateau. Sci. Rep. 10, 18797 (2020).

    Article 

    Google Scholar 

  • Zhang, X. et al. Effects of climate change on the growing season of alpine grassland in Northern Tibet, China. Glob. Ecol. Conserv. 23, e01126 (2020).

    Article 

    Google Scholar 

  • Sun, Q. et al. A prognostic phenology model for alpine meadows on the Qinghai–Tibetan Plateau. Ecol. Indic. 93, 1089–1100 (2018).

    Article 

    Google Scholar 

  • Zhu, J., Zhang, Y. & Jiang, L. Experimental warming drives a seasonal shift of ecosystem carbon exchange in Tibetan alpine meadow. Agric. For. Meteorol. 233, 242–249 (2017).

    Article 

    Google Scholar 

  • Shen, M. et al. No evidence of continuously advanced green-up dates in the Tibetan Plateau over the last decade. Proc. Natl Acad. Sci. USA 110, E2329 (2013).

    Google Scholar 

  • Fu, Y. S. et al. Variation in leaf flushing date influences autumnal senescence and next year’s flushing date in two temperate tree species. Proc. Natl Acad. Sci. USA 111, 7355–7360 (2014).

    Article 

    Google Scholar 

  • Delpierre, N. et al. Modelling interannual and spatial variability of leaf senescence for three deciduous tree species in France. Agric. For. Meteorol. 149, 938–948 (2009).

    Article 

    Google Scholar 

  • Keenan, T. F. & Richardson, A. D. The timing of autumn senescence is affected by the timing of spring phenology: implications for predictive models. Glob. Change Biol. 21, 2634–2641 (2015).

    Article 

    Google Scholar 

  • Meng, F. D. et al. Changes in flowering functional group affect responses of community phenological sequences to temperature change. Ecology 98, 734–740 (2017).

    Article 

    Google Scholar 

  • Wang, S. et al. Timing and duration of phenological sequences of alpine plants along an elevation gradient on the Tibetan plateau. Agric. For. Meteorol. 189–190, 220–228 (2014).

    Article 

    Google Scholar 

  • Jiang, L. L. et al. Relatively stable response of fruiting stage to warming and cooling relative to other phenological events. Ecology 97, 1961–1969 (2016).

    Article 

    Google Scholar 

  • Li, X. et al. Responses of sequential and hierarchical phenological events to warming and cooling in alpine meadows. Nat. Commun. 7, 12489 (2016).

    Article 

    Google Scholar 

  • Meng, F. et al. Nonlinear responses of temperature sensitivities of community phenophases to warming and cooling events are mirroring plant functional diversity. Agric. For. Meteorol. 253–254, 31–37 (2018).

    Article 

    Google Scholar 

  • Meng, F. et al. Divergent responses of community reproductive and vegetative phenology to warming and cooling: asymmetry versus symmetry. Front. Plant Sci. 10, 1310 (2019).

    Article 

    Google Scholar 

  • Zhang, Z., Niu, K., Liu, X., Jia, P. & Du, G. Linking flowering and reproductive allocation in response to nitrogen addition in an alpine meadow. J. Plant Ecol. 7, 231–239 (2013).

    Article 

    Google Scholar 

  • Xi, Y. et al. Nitrogen addition alters the phenology of a dominant alpine plant in Northern Tibet. Arct. Antarct. Alp. Res. 47, 511–518 (2018).

    Article 

    Google Scholar 

  • Yin, T.-F., Zheng, L.-L., Cao, G.-M., Song, M.-H. & Yu, F.-H. Species-specific phenological responses to long-term nitrogen fertilization in an alpine meadow. J. Plant Ecol. 10, 301–309 (2016).

    Google Scholar 

  • Liu, L. et al. Altered precipitation patterns and simulated nitrogen deposition effects on phenology of common plant species in a Tibetan Plateau alpine meadow. Agric. For. Meteorol. 236, 36–47 (2017).

    Article 

    Google Scholar 

  • Liu, Y. et al. Effects of nitrogen addition and mowing on reproductive phenology of three early-flowering forb species in a Tibetan alpine meadow. Ecol. Eng. 99, 119–125 (2017).

    Article 

    Google Scholar 

  • Zhu, J., Zhang, Y. & Liu, Y. Effects of short-term grazing exclusion on plant phenology and reproductive succession in a Tibetan alpine meadow. Sci. Rep. 6, 27781 (2016).

    Article 

    Google Scholar 

  • Li, Y. et al. The effects of grazing regimes on phenological stages, intervals and divergences of alpine plants on the Qinghai–Tibetan Plateau. J. Veg. Sci. 30, 134–145 (2019).

    Article 

    Google Scholar 

  • Dorji, T. et al. Impacts of climate change on flowering phenology and production in alpine plants: the importance of end of flowering. Agric. Ecosyst. Environ. 291, 106795 (2020).

    Article 

    Google Scholar 

  • Meng, F. et al. Opposite effects of winter day and night temperature changes on early phenophases. Ecology 100, e02775 (2019).

    Article 

    Google Scholar 

  • Meng, F. et al. Temperature sensitivity thresholds to warming and cooling in phenophases of alpine plants. Clim. Change 139, 579–590 (2016).

    Article 

    Google Scholar 

  • Suonan, J., Classen, A. T., Sanders, N. J. & He, J. S. Plant phenological sensitivity to climate change on the Tibetan Plateau and relative to other areas of the world. Ecosphere 10, e02543 (2019).

    Article 

    Google Scholar 

  • Ganjurjav, H. et al. Phenological changes offset the warming effects on biomass production in an alpine meadow on the Qinghai–Tibetan Plateau. J. Ecol. 109, 1014–1025 (2020).

    Article 

    Google Scholar 

  • Jiang, Z. et al. Extreme climate events in China: IPCC-AR4 model evaluation and projection. Clim. Change 110, 385–401 (2011).

    Article 

    Google Scholar 

  • Huang, X. et al. Spatiotemporal dynamics of snow cover based on multi-source remote sensing data in China. Cryosphere 10, 2453–2463 (2016).

    Article 

    Google Scholar 

  • Piao, S. et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 1, 14–27 (2019).

    Article 

    Google Scholar 

  • Wang, C. & Tang, Y. Responses of plant phenology to nitrogen addition: a meta-analysis. Oikos 128, 1243–1253 (2019).

    Article 

    Google Scholar 

  • Chen, H., Zhu, Q., Wu, N., Wang, Y. & Peng, C. H. Delayed spring phenology on the Tibetan Plateau may also be attributable to other factors than winter and spring warming. Proc. Natl Acad. Sci. USA 108, E93 (2011).

    Google Scholar 

  • Zhang, L. et al. Effect of warming and degradation on phenophases of Kobresia pygmaea and Potentilla multifida on the Tibetan Plateau. Agric. Ecosyst. Environ. 300, 106998 (2020).

    Article 

    Google Scholar 

  • Lin, X. et al. Fluxes of CO2, CH4, and N2O in an alpine meadow affected by yak excreta on the Qinghai-Tibetan plateau during summer grazing periods. Soil Biol. Biochem. 41, 718–725 (2009).

    Article 

    Google Scholar 

  • Sa, C. et al. Spatiotemporal variation in snow cover and its effects on grassland phenology on the Mongolian Plateau. J. Arid Land 13, 332–349 (2021).

    Article 

    Google Scholar 

  • Zheng, J., Xu, X., Jia, G. & Wu, W. Understanding the spring phenology of Arctic tundra using multiple satellite data products and ground observations. Sci. China Earth Sci. 63, 1599–1612 (2020).

    Article 

    Google Scholar 

  • Wu, W., Sun, Y., Xiao, K. & Xin, Q. Development of a global annual land surface phenology dataset for 1982–2018 from the AVHRR data by implementing multiple phenology retrieving methods. Int. J. Appl. Earth Obs. Geoinf. 103, 102487 (2021).

    Google Scholar 

  • Karkauskaite, P., Tagesson, T. & Fensholt, R. Evaluation of the plant phenology index (PPI), NDVI and EVI for start-of-season trend analysis of the Northern Hemisphere boreal zone. Remote Sens. 9, 485 (2017).

    Article 

    Google Scholar 

  • Yang, Y., Guan, H., Shen, M., Liang, W. & Jiang, L. Changes in autumn vegetation dormancy onset date and the climate controls across temperate ecosystems in China from 1982 to 2010. Glob. Change Biol. 21, 652–665 (2015).

    Article 

    Google Scholar 

  • Zhang, J. et al. Comparison of land surface phenology in the Northern Hemisphere based on AVHRR GIMMS3g and MODIS datasets. ISPRS J. Photogramm. Remote Sens. 169, 1–16 (2020).

    Article 

    Google Scholar 

  • Shen, M. et al. Earlier-season vegetation has greater temperature sensitivity of spring phenology in northern hemisphere. PLoS ONE 9, e88178 (2014).

    Article 

    Google Scholar 

  • Zhang, H., Yuan, W., Liu, S., Dong, W. & Fu, Y. Sensitivity of flowering phenology to changing temperature in China. J. Geophys. Res. Biogeosci. 120, 1658–1665 (2015).

    Article 

    Google Scholar 

  • Cook, B. I. et al. Sensitivity of spring phenology to warming across temporal and spatial climate gradients in two independent databases. Ecosystems 15, 1283–1294 (2012).

    Article 

    Google Scholar 

  • Wang, C., Cao, R., Chen, J., Rao, Y. & Tang, Y. Temperature sensitivity of spring vegetation phenology correlates to within-spring warming speed over the Northern Hemisphere. Ecol. Indic. 50, 62–68 (2015).

    Article 

    Google Scholar 

  • Gao, M. et al. Three-dimensional change in temperature sensitivity of northern vegetation phenology. Glob. Change Biol. 26, 5189–5201 (2020).

    Article 

    Google Scholar 

  • Zohner, C. M., Benito, B. M., Fridley, J. D., Svenning, J. C. & Renner, S. S. Spring predictability explains different leaf-out strategies in the woody floras of North America, Europe and East Asia. Ecol. Lett. 20, 452–460 (2017).

    Article 

    Google Scholar 

  • Fu, Y. H. et al. Daylength helps temperate deciduous trees to leaf-out at the optimal time. Glob. Change Biol. 25, 2410–2418 (2019).

    Article 

    Google Scholar 

  • Huang, J. G. et al. Photoperiod and temperature as dominant environmental drivers triggering secondary growth resumption in Northern Hemisphere conifers. Proc. Natl Acad. Sci. USA 117, 20645–20652 (2020).

    Article 

    Google Scholar 

  • Iler, A. M., CaraDonna, P. J., Forrest, J. R. K. & Post, E. Demographic consequences of phenological shifts in response to climate change. Annu. Rev. Ecol. Evol. Syst. 52, 221–245 (2021).

    Article 

    Google Scholar 

  • Chen, S., Huang, Y., Gao, S. & Wang, G. Impact of physiological and phenological change on carbon uptake on the Tibetan Plateau revealed through GPP estimation based on spaceborne solar-induced fluorescence. Sci. Total Environ. 663, 45–59 (2019).

    Article 

    Google Scholar 

  • Jin, J. et al. Grassland production in response to changes in biological metrics over the Tibetan Plateau. Sci. Total Environ. 666, 641–651 (2019).

    Article 

    Google Scholar 

  • Kang, X. et al. Variability and changes in climate, phenology, and gross primary production of an alpine wetland ecosystem. Remote Sens. 8, 391 (2016).

    Article 

    Google Scholar 

  • Zheng, Z., Zhu, W. & Zhang, Y. Direct and lagged effects of spring phenology on net primary productivity in the alpine grasslands on the Tibetan Plateau. Remote Sens. 12, 1223 (2020).

    Article 

    Google Scholar 

  • Wang, S. et al. Responses of net primary productivity to phenological dynamics in the Tibetan Plateau, China. Agric. For. Meteorol. 232, 235–246 (2017).

    Article 

    Google Scholar 

  • Li, S., Zhang, H., Zhou, X., Yu, H. & Li, W. Enhancing protected areas for biodiversity and ecosystem services in the Qinghai–Tibet Plateau. Ecosyst. Serv. 43, 101090 (2020).

    Article 

    Google Scholar 

  • Meng, F. et al. Enhanced spring temperature sensitivity of carbon emission links to earlier phenology. Sci. Total Environ. 745, 140999 (2020).

    Article 

    Google Scholar 

  • Hu, G. et al. The divergent impact of phenology change on the productivity of alpine grassland due to different timing of drought on the Tibetan Plateau. Land Degrad. Dev. 32, 4033–4041 (2021).

    Article 

    Google Scholar 

  • Li, P., Zhu, W. & Xie, Z. Diverse and divergent influences of phenology on herbaceous aboveground biomass across the Tibetan Plateau alpine grasslands. Ecol. Indic. 121, 107036 (2021).

    Article 

    Google Scholar 

  • He, M. et al. Relationships between wood formation and cambium phenology on the Tibetan Plateau during 1960–2014. Forests 9, 86 (2018).

    Article 

    Google Scholar 

  • Wang, J., Li, M., Yu, C. & Fu, G. The change in environmental variables linked to climate change has a stronger effect on aboveground net primary productivity than does phenological change in alpine grasslands. Front. Plant Sci. 12, 798633 (2022).

    Article 

    Google Scholar 

  • Shen, W., Zhang, L. & Luo, T. Causes for the increase of early-season freezing events under a warmer climate at alpine treelines in southeast Tibet. Agric. For. Meteorol. 316, 108863 (2022).

    Article 

    Google Scholar 

  • Ye, D.-Z. & Wu, G.-X. The role of the heat source of the Tibetan Plateau in the general circulation. Meteorol. Atmos. Phys. 67, 181–198 (1998).

    Article 

    Google Scholar 

  • Cao, R., Feng, Y., Liu, X., Shen, M. & Zhou, J. Uncertainty of vegetation green-up date estimated from vegetation indices due to snowmelt at northern middle and high latitudes. Remote Sens. 12, 190 (2020).

    Article 

    Google Scholar 

  • Zeng, L., Wardlow, B. D., Xiang, D., Hu, S. & Li, D. A review of vegetation phenological metrics extraction using time-series, multispectral satellite data. Remote Sens. Environ. 237, 111511 (2020).

    Article 

    Google Scholar 

  • Cao, R. et al. A simple method to improve the quality of NDVI time-series data by integrating spatiotemporal information with the Savitzky-Golay filter. Remote Sens. Environ. 217, 244–257 (2018).

    Article 

    Google Scholar 

  • Chen, J. et al. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky–Golay filter. Remote Sens. Environ. 91, 332–344 (2004).

    Article 

    Google Scholar 

  • Wang, C. et al. A snow-free vegetation index for improved monitoring of vegetation spring green-up date in deciduous ecosystems. Remote Sens. Environ. 196, 1–12 (2017).

    Article 

    Google Scholar 

  • Yang, W. et al. A semi-analytical snow-free vegetation index for improving estimation of plant phenology in tundra and grassland ecosystems. Remote Sens. Environ. 228, 31–44 (2019).

    Article 

    Google Scholar 

  • Wang, C., Chen, J., Tang, Y., Black, T. A. & Zhu, K. A novel method for removing snow melting-induced fluctuation in GIMMS NDVI3g data for vegetation phenology monitoring: a case study in deciduous forests of North America. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 11, 800–807 (2018).

    Article 

    Google Scholar 

  • Helman, D. Land surface phenology: What do we really ‘see’ from space? Sci. Total Environ. 618, 665–673 (2018).

    Article 

    Google Scholar 

  • Steltzer, H. & Post, E. Ecology. Seasons and life cycles. Science 324, 886–887 (2009).

    Article 

    Google Scholar 

  • Liang, L., Schwartz, M. D. & Fei, S. Validating satellite phenology through intensive ground observation and landscape scaling in a mixed seasonal forest. Remote Sens. Environ. 115, 143–157 (2011).

    Article 

    Google Scholar 

  • Li, R. et al. Leaf unfolding of Tibetan alpine meadows captures the arrival of monsoon rainfall. Sci. Rep. 6, 20985 (2016).

    Article 

    Google Scholar 

  • Tang, J. et al. Emerging opportunities and challenges in phenology: a review. Ecosphere 7, e01436 (2016).

    Article 

    Google Scholar 

  • Van Nuland, M. E. et al. Natural soil microbiome variation affects spring foliar phenology with consequences for plant productivity and climate-driven range shifts. New Phytol. 232, 762–775 (2021).

    Article 

    Google Scholar 

  • Mutz, J., McClory, R., van Dijk, L. J. A., Ehrlen, J. & Tack, A. J. M. Pathogen infection influences the relationship between spring and autumn phenology at the seedling and leaf level. Oecologia 197, 447–457 (2021).

    Article 

    Google Scholar 

  • Radville, L., McCormack, M. L., Post, E. & Eissenstat, D. M. Root phenology in a changing climate. J. Exp. Bot. 67, 3617–3628 (2016).

    Article 

    Google Scholar 

  • Gao, M. et al. Divergent changes in the elevational gradient of vegetation activities over the last 30 years. Nat. Commun. 10, 2970 (2019).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Agro-pastoralists’ perception of climate change and adaptation in the Qilian Mountains of northwest China

    Best practices for instrumenting honey bees