in

Standardised bioassays reveal that mosquitoes learn to avoid compounds used in chemical vector control after a single sub-lethal exposure

[adace-ad id="91168"]
  • Webb, B. Cognition in insects. Philos. Trans. R. Soc B 367, 2715–2722 (2012).

    Google Scholar 

  • Lorenz, K. The Foundations of Ethology 347–352 (Springer, 1981).

    Google Scholar 

  • Davis, R. L. Olfactory memory formation in Drosophila: From molecular to systems neuroscience. Annu. Rev. Neurosci. 28, 275–302 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Prokopy, R. J., Averill, A. L., Cooley, S. S. & Roitberg, C. A. Associative learning in egglaying site selection by apple maggot flies. Science 218, 76–77 (1982).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Tempel, B. L., Bonini, N., Dawson, D. R. & Quinn, W. G. Reward learning in normal and mutant Drosophila. Proc. Natl Acad. Sci. 80, 1482–1486 (1983).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cook, D. F. Influence of previous mating experience on future mating success in maleLucilia cuprina (Diptera: Calliphoridae). J. Insect Behav. 8, 207–217 (1994).

    Google Scholar 

  • Raubenheimer, D. & Tucker, D. Associative learning by locusts: Pairing of visual cues with consumption of protein and carbohydrate. Anim. Behav. 54, 1449–1459 (1997).

    CAS 
    PubMed 

    Google Scholar 

  • Harari, A. R. & Landolt, P. J. Feeding experience enhances attraction of female Diaprepes abbreviatus (L.) (Coleoptera: Curculionidae) to food plant odors. 8. J. Insect Behav. 12, 415–422 (1999).

    Google Scholar 

  • Menzel, R. Memory dynamics in the honeybee. J. Comp. Physiol. A 185, 323–340 (1999).

    ADS 

    Google Scholar 

  • McCall, P. J. & Kelly, D. W. Learning and memory in disease vectors. Trends Parasitol. 18, 429–433 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • Alonso, W. J. & Schuck-Paim, C. The ‘ghosts’ that pester studies on learning in mosquitoes: Guidelines to chase them off. Med. Vet. Entomol. 20, 157–165 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • WHO. Global Vector Control Response 20217–22030 (World Health Organization, 2017).

    Google Scholar 

  • Rocklöv, J. & Dubrow, R. Climate change: An enduring challenge for vector-borne disease prevention and control. Nat. Immunol. 21, 479–483 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bhatt, S. et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature 526, 207–211 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hemingway, J. et al. Averting a malaria disaster: Will insecticide resistance derail malaria control?. The Lancet 387, 1785–1788 (2016).

    Google Scholar 

  • Martinez-Torres, D. et al. Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae ss. Insect Mol. Biol. 7, 179–184 (1998).

    CAS 
    PubMed 

    Google Scholar 

  • Chandre, F. et al. Current distribution of a pyrethroid resistance gene (kdr) in Anopheles gambiae complex from West Africa and further evidence for reproductive isolation of the Mopti form. Parassitologia 41, 319–322 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • Weill, M. et al. The unique mutation in ace-1 giving high insecticide resistance is easily detectable in mosquito vectors. Insect Mol. Biol. 13, 1–7 (2004).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Du, W. et al. Independent mutations in the Rdl locus confer dieldrin resistance to Anopheles gambiae and An. arabiensis. Insect Mol. Biol. 14, 179–183 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Hemingway, J. & Ranson, H. Insecticide resistance in insect vectors of human disease. Annu. Rev. Entomol. 45, 371–391 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Ranson, H. et al. Pyrethroid resistance in African anopheline mosquitoes: What are the implications for malaria control?. Trends Parasitol. 27, 91–98 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Liu, N. Insecticide resistance in mosquitoes: Impact, mechanisms, and research directions. Annu. Rev. Entomol. 60, 537–559 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Wood, O., Hanrahan, S., Coetzee, M., Koekemoer, L. & Brooke, B. Cuticle thickening associated with pyrethroid resistance in the major malaria vector Anopheles funestus. Parasit Vectors 3, 67 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Balabanidou, V. et al. Cytochrome P450 associated with insecticide resistance catalyzes cuticular hydrocarbon production in Anopheles gambiae. PNAS 113, 9268–9273 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Balabanidou, V. et al. Mosquitoes cloak their legs to resist insecticides. Proc Biol. Sci. 286, 20191091 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Muirhead-Thomson, R. C. The significance of irritability, behaviouristic avoidance and allied phenomena in malaria eradication. Bull. World Health Organ. 22, 721–734 (1960).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Georghiou, G. P. The evolution of resistance to pesticides. Annu. Rev. Ecol. Syst. 3, 133–168 (1972).

    CAS 

    Google Scholar 

  • Grieco, J. P. et al. A new classification system for the actions of IRS chemicals traditionally used for malaria control. PLoS ONE 2, e716 (2007).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chareonviriyaphap, T. et al. Review of insecticide resistance and behavioral avoidance of vectors of human diseases in Thailand. Parasit Vectors 6, 280 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chilaka, N., Perkins, E. & Tripet, F. Visual and olfactory associative learning in the malaria vector Anopheles gambiae sensu stricto. Malar. J. 11, 27 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Vinauger, C., Lahondère, C., Cohuet, A., Lazzari, C. R. & Riffell, J. A. Learning and memory in disease vector insects. Trends Parasitol. 32, 761–771 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Carrasco, D. et al. Behavioural adaptations of mosquito vectors to insecticide control. Curr. Opin. Insect Sci. 34, 48–54 (2019).

    PubMed 

    Google Scholar 

  • Tomberlin, J. K., Rains, G. C., Allan, S. A., Sanford, M. R. & Lewis, W. J. Associative learning of odor with food- or blood-meal by Culex quinquefasciatus Say (Diptera: Culicidae). Naturwissenschaften 93, 551–556 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Menda, G. et al. Associative learning in the dengue vector mosquito, Aedes aegypti: Avoidance of a previously attractive odor or surface color that is paired with an aversive stimulus. J. Exp. Biol. 216, 218–223 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Vinauger, C., Lutz, E. K. & Riffell, J. A. Olfactory learning and memory in the disease vector mosquito Aedes aegypti. J. Exp. Biol. 217, 2321–2330 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • WHO. Guidelines for laboratory and field-testing of long-lasting insecticidal nets (World Health Organization, 2013).

    Google Scholar 

  • WHO. Test procedures for insecticide resistance monitoring in malaria vector mosquitoes 2nd edn. (World Health Organization, 2016).

    Google Scholar 

  • Rivero, A., Vézilier, J., Weill, M., Read, A. F. & Gandon, S. Insecticide control of vector-borne diseases: When is insecticide resistance a problem?. PLoS Pathog. 6, e1001000 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Maciel-de-Freitas, R. et al. Undesirable consequences of insecticide resistance following Aedes aegypti control activities due to a dengue outbreak. PLoS ONE 9, e92424 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sherrard-Smith, E. et al. Systematic review of indoor residual spray efficacy and effectiveness against Plasmodium falciparum in Africa. Nat. Commun. 9, 4982 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dusfour, I. et al. Management of insecticide resistance in the major Aedes vectors of arboviruses: Advances and challenges. PLoS Negl. Trop. Dis. 13, e0007615 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Perrin, A. et al. Variation in the susceptibility of urban Aedes mosquitoes infected with a densovirus. Sci. Rep. 10, 18654 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wilson, A. L. et al. The importance of vector control for the control and elimination of vector-borne diseases. PLoS Negl. Trop. Dis. 14, e0007831 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wills, A. B. et al. Physical durability of PermaNet 2.0 long-lasting insecticidal nets over three to 32 months of use in Ethiopia. Malar. J. 12, 242 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gnanguenon, V., Azondekon, R., Oke-Agbo, F., Beach, R. & Akogbeto, M. Durability assessment results suggest a serviceable life of two, rather than three, years for the current long-lasting insecticidal (mosquito) net (LLIN) intervention in Benin. BMC Infect. Dis. 14, 69 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Boussougou-Sambe, S. T. et al. Physical integrity and residual bio-efficacy of used LLINs in three cities of the South-West region of Cameroon 4 years after the first national mass-distribution campaign. Malar. J. 16, 31 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Janko, M. M., Churcher, T. S., Emch, M. E. & Meshnick, S. R. Strengthening long-lasting insecticidal nets effectiveness monitoring using retrospective analysis of cross-sectional, population-based surveys across sub-Saharan Africa. Sci. Rep. 8, 17110 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Djènontin, A. et al. The residual life of bendiocarb on different substrates under laboratory and field conditions in Benin, Western Africa. BMC Res Notes 6, 458 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Mugenyi, L. et al. Estimating the optimal interval between rounds of indoor residual spraying of insecticide using malaria incidence data from cohort studies. PLoS ONE 15, e0241033 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kreppel, K. S. et al. Emergence of behavioural avoidance strategies of malaria vectors in areas of high LLIN coverage in Tanzania. Sci. Rep. 10, 14527 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Parker, J. E. A. et al. Infrared video tracking of Anopheles gambiae at insecticide-treated bed nets reveals rapid decisive impact after brief localised net contact. Sci. Rep. 5, 13392 (2015).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Spitzen, J., Koelewijn, T., Mukabana, W. R. & Takken, W. Visualization of house-entry behaviour of malaria mosquitoes. Malar. J. 15, 233 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Spitzen, J. & Takken, W. Keeping track of mosquitoes: A review of tools to track, record and analyse mosquito flight. Parasit. Vectors https://doi.org/10.1186/s13071-018-2735-6 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jones, J., Murray, G. & McCall, P. J. A minimal 3D model of mosquito flight behavior around the human baited bed net. Malar. J. 20, (2021)

  • Sougoufara, S., Ottih, E. C. & Tripet, F. The need for new vector control approaches targeting outdoor biting anopheline malaria vector communities. Parasit. Vectors 13, 295 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Okumu, F. O. & Moore, S. J. Combining indoor residual spraying and insecticide-treated nets for malaria control in Africa: A review of possible outcomes and an outline of suggestions for the future. Malar. J. 10, 208 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Deletre, E. et al. Repellent, irritant and toxic effects of 20 plant extracts on adults of the malaria vector Anopheles gambiae Mosquito. PLoS One 8, e82103 (2013).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    3 Questions: The future of international education

    Advancing public understanding of sea-level rise