in

A planetary boundary for green water

[adace-ad id="91168"]
  • Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).

    Article 

    Google Scholar 

  • Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015). Revises and updates the planetary boundaries framework, including a regional-scale planetary boundary for freshwater use based on environmental flow requirements.

    Article 

    Google Scholar 

  • Steffen, W. et al. Trajectories of the Earth System in the Anthropocene. Proc. Natl Acad. Sci. USA 115, 8252–8259 (2018).

    Article 

    Google Scholar 

  • Gerten, D. et al. Towards a revised planetary boundary for consumptive freshwater use: role of environmental flow requirements. Curr. Opin. Environ. Sustain. 5, 551–558 (2013).

    Article 

    Google Scholar 

  • Gleeson, T. et al. Illuminating water cycle modifications and Earth system resilience in the Anthropocene. Water Resour. Res. 56, e2019WR024957 (2020). Provides an overview of the many roles of the water cycle for Earth system functioning and evidence-based justification for a water planetary boundary that represents more than blue water.

    Article 

    Google Scholar 

  • Gleeson, T. et al. The water planetary boundary: interrogation and revision. One Earth 2, 223–234 (2020).

    Article 

    Google Scholar 

  • Karlberg, L., Rockström, J., Falkenmark, M. & Others. in Rainfed Agriculture: Unlocking the Potential (eds Wani, S. P., Rockström, J. & Oweis, T.) 44–57 (CABI, 2009).

  • Levy, M. C., Lopes, A. V., Cohn, A., Larsen, L. G. & Thompson, S. E. Land use change increases streamflow across the arc of deforestation in Brazil. Geophys. Res. Lett. 45, 3520–3530 (2018).

    Article 

    Google Scholar 

  • Falkenmark, M., Wang-Erlandsson, L. & Rockström, J. Understanding of water resilience in the Anthropocene. J. Hydrol. X 2, 100009 (2019).

    Article 

    Google Scholar 

  • Staal, A. et al. Hysteresis of tropical forests in the 21st century. Nat. Commun. 11, 4978 (2020).

    Article 

    Google Scholar 

  • Berdugo, M. et al. Global ecosystem thresholds driven by aridity. Science 367, 787–790 (2020).

    Article 

    Google Scholar 

  • Gordon, L. J., Peterson, G. D. & Bennett, E. M. Agricultural modifications of hydrological flows create ecological surprises. Trends Ecol. Evol. 23, 211–219 (2008).

    Article 

    Google Scholar 

  • Liu, J., Wang, B., Cane, M. A., Yim, S.-Y. & Lee, J.-Y. Divergent global precipitation changes induced by natural versus anthropogenic forcing. Nature 493, 656–659 (2013).

    Article 

    Google Scholar 

  • Miralles, D. G., Brutsaert, W., Dolman, A. J. & Gash, J. H. On the use of the term ‘evapotranspiration’. Water Resour. Res. 56, e2020WR028055 (2020).

    Article 

    Google Scholar 

  • Berg, A., Lintner, B. R., Findell, K. & Giannini, A. Uncertain soil moisture feedbacks in model projections of Sahel precipitation. Geophys. Res. Lett. 44, 6124–6133 (2017).

    Article 

    Google Scholar 

  • Seneviratne, S. I. et al. Investigating soil moisture–climate interactions in a changing climate: A review. Earth Sci. Rev. 99, 125–161 (2010).

    Article 

    Google Scholar 

  • Tuinenburg, O. A. Atmospheric Effects of Irrigation in Monsoon Climate: The Indian Subcontinent. PhD thesis, Wageningen Univ. (2013).

  • Green, T. R. et al. Beneath the surface of global change: Impacts of climate change on groundwater. J. Hydrol. 405, 532–560 (2011).

    Article 

    Google Scholar 

  • Del Grosso, S. et al. Global potential net primary production predicted from vegetation class, precipitation, and temperature. Ecology 89, 2117–2126 (2008).

    Article 

    Google Scholar 

  • Shi, P. et al. Urbanization and air quality as major drivers of altered spatiotemporal patterns of heavy rainfall in China. Landsc. Ecol. 32, 1723–1738 (2017).

    Article 

    Google Scholar 

  • Runyan, C. W., D’Odorico, P. & Lawrence, D. Physical and biological feedbacks of deforestation. Rev. Geophys. 50, RG4006 (2012).

    Article 

    Google Scholar 

  • Wang-Erlandsson, L. et al. Remote land use impacts on river flows through atmospheric teleconnections. Hydrol. Earth Syst. Sci. 22, 4311–4328 (2018).

    Article 

    Google Scholar 

  • Lo, M.-H. & Famiglietti, J. S. Irrigation in California’s Central Valley strengthens the southwestern U.S. water cycle. Geophys. Res. Lett. 40, 301–306 (2013).

    Article 

    Google Scholar 

  • Lawrence, D. & Vandecar, K. Effects of tropical deforestation on climate and agriculture. Nat. Clim. Change 5, 27–36 (2015).

    Article 

    Google Scholar 

  • Pitman, A. J. et al. Effects of land cover change on temperature and rainfall extremes in multi-model ensemble simulations. Earth Syst. Dyn. 3, 213–231 (2012).

    Article 

    Google Scholar 

  • Sillmann, J. et al. Extreme wet and dry conditions affected differently by greenhouse gases and aerosols. NPJ Clim. Atmos. Sci. 2, 24 (2019).

    Article 

    Google Scholar 

  • Pascale, S., Lucarini, V., Feng, X., Porporato, A. & ul Hasson, S. Projected changes of rainfall seasonality and dry spells in a high greenhouse gas emissions scenario. Clim. Dyn. 46, 1331–1350 (2016).

    Article 

    Google Scholar 

  • Rosenfeld, D. et al. Flood or drought: how do aerosols affect precipitation? Science 321, 1309–1313 (2008).

    Article 

    Google Scholar 

  • Fowler, H. J. et al. Anthropogenic intensification of short-duration rainfall extremes. Nat. Rev. Earth Environ. 2, 107–122 (2021).

    Article 

    Google Scholar 

  • Zhang, W. et al. Increasing precipitation variability on daily-to-multiyear time scales in a warmer world. Sci. Adv. 7, eabf8021 (2021).

    Article 

    Google Scholar 

  • Chiang, F., Mazdiyasni, O. & AghaKouchak, A. Evidence of anthropogenic impacts on global drought frequency, duration, and intensity. Nat. Commun. 12, 2754 (2021).

    Article 

    Google Scholar 

  • Lenton, T. M. et al. Tipping elements in the Earth’s climate system. Proc. Natl Acad. Sci. USA 105, 1786–1793 (2008).

    Article 

    Google Scholar 

  • Hirota, M., Holmgren, M., Van Nes, E. H. & Scheffer, M. Global resilience of tropical forest and savanna to critical transitions. Science 334, 232–235 (2011).

    Article 

    Google Scholar 

  • Staver, C. A., Archibald, S. & Levin, S. A. The global extent and determinants of savanna and forest as alternative biome states. Science 334, 230–232 (2011).

    Article 

    Google Scholar 

  • Vico, G., Dralle, D., Feng, X., Thompson, S. & Manzoni, S. How competitive is drought deciduousness in tropical forests? A combined eco-hydrological and eco-evolutionary approach. Environ. Res. Lett. 12, 065006 (2017).

    Article 

    Google Scholar 

  • Duke, N. C., Field, C., Mackenzie, J. R., Meynecke, J.-O. & Wood, A. L. Rainfall and its possible hysteresis effect on the proportional cover of tropical tidal-wetland mangroves and saltmarsh–saltpans. Mar. Freshw. Res. 70, 1047–1055 (2019).

    Article 

    Google Scholar 

  • Neves, D. M. et al. Evolutionary diversity in tropical tree communities peaks at intermediate precipitation. Sci. Rep. 10, 1188 (2020).

    Article 

    Google Scholar 

  • Liu, Z. et al. Precipitation thresholds regulate net carbon exchange at the continental scale. Nat. Commun. 9, 3596 (2018).

    Article 

    Google Scholar 

  • Guan, K. et al. Photosynthetic seasonality of global tropical forests constrained by hydroclimate. Nat. Geosci. 8, 284–289 (2015).

    Article 

    Google Scholar 

  • Souza, R. et al. Vegetation response to rainfall seasonality and interannual variability in tropical dry forests. Hydrol. Process. 30, 3583–3595 (2016).

    Article 

    Google Scholar 

  • Rohr, T., Manzoni, S., Feng, X., Menezes, R. S. C. & Porporato, A. Effect of rainfall seasonality on carbon storage in tropical dry ecosystems. J. Geophys. Res. Biogeosci. 118, 1156–1167 (2013).

    Article 

    Google Scholar 

  • Vezzoli, R., De Michele, C., Pavlopoulos, H. & Scholes, R. J. Dryland ecosystems: The coupled stochastic dynamics of soil water and vegetation and the role of rainfall seasonality. Phys. Rev. E 77, 051908 (2008).

    Article 

    Google Scholar 

  • Li, C. et al. Drivers and impacts of changes in China’s drylands. Nat. Rev. Earth Environ. 2, 858–873 (2021).

    Article 

    Google Scholar 

  • Aguirre-Gutiérrez, J. et al. Long-term droughts may drive drier tropical forests towards increased functional, taxonomic and phylogenetic homogeneity. Nat. Commun. 11, 3346 (2020).

    Article 

    Google Scholar 

  • Anderson, L. O. et al. Vulnerability of Amazonian forests to repeated droughts. Philos. Trans. R. Soc. B: Biol. Sci. 373, 20170411 (2018).

    Article 

    Google Scholar 

  • Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020). Extensive observation-based analyses show that net carbon uptake has peaked in the Amazon, and, more recently, also in African rainforests.

    Article 

    Google Scholar 

  • Dannenberg, M. P., Wise, E. K. & Smith, W. K. Reduced tree growth in the semiarid United States due to asymmetric responses to intensifying precipitation extremes. Sci. Adv. 5, eaaw0667 (2019).

    Article 

    Google Scholar 

  • Gherardi, L. A. & Sala, O. E. Enhanced precipitation variability decreases grass- and increases shrub-productivity. Proc. Natl Acad. Sci. USA 112, 12735–12740 (2015).

    Article 

    Google Scholar 

  • Eekhout, J. P. C., Hunink, J. E., Terink, W. & de Vente, J. Why increased extreme precipitation under climate change negatively affects water security. Hydrol. Earth Syst. Sci. 22, 5935–5946 (2018).

    Article 

    Google Scholar 

  • Sharma, A., Wasko, C. & Lettenmaier, D. P. If precipitation extremes are increasing, why aren’t floods? Water Resour. Res. 54, 8545–8551 (2018).

    Article 

    Google Scholar 

  • Merz, B. et al. Causes, impacts and patterns of disastrous river floods. Nat. Rev. Earth Environ. 2, 592–609 (2021).

    Article 

    Google Scholar 

  • Sterling, S. M., Ducharne, A. & Polcher, J. The impact of global land-cover change on the terrestrial water cycle. Nat. Clim. Change 3, 385–390 (2013).

    Article 

    Google Scholar 

  • Gordon, L. J. et al. Human modification of global water vapor flows from the land surface. Proc. Natl Acad. Sci. USA 102, 7612–7617 (2005).

    Article 

    Google Scholar 

  • Rost, S., Gerten, D. & Heyder, U. Human alterations of the terrestrial water cycle through land management. Adv. Geosci. 18, 43–50 (2008).

    Article 

    Google Scholar 

  • Zhang, K. et al. Vegetation greening and climate change promote multidecadal rises of global land evapotranspiration. Sci. Rep. 5, 15956 (2015).

    Article 

    Google Scholar 

  • Cheng, L. et al. Recent increases in terrestrial carbon uptake at little cost to the water cycle. Nat. Commun. 8, 110 (2017).

    Article 

    Google Scholar 

  • Ainsworth, E. A. & Rogers, A. The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant. Cell Environ. 30, 258–270 (2007).

    Article 

    Google Scholar 

  • Keenan, T. F. et al. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499, 324–327 (2013).

    Article 

    Google Scholar 

  • Keys, P. W., Wang-Erlandsson, L. & Gordon, L. J. Revealing invisible water: moisture recycling as an ecosystem service. PLoS One 11, e0151993 (2016).

    Article 

    Google Scholar 

  • Thiery, W. et al. Present-day irrigation mitigates heat extremes. J. Geophys. Res. Atmos. 122, 1403–1422 (2017).

    Article 

    Google Scholar 

  • Thiery, W. et al. Warming of hot extremes alleviated by expanding irrigation. Nat. Commun. 11, 290 (2020).

    Article 

    Google Scholar 

  • Kang, S. & Eltahir, E. A. B. North China Plain threatened by deadly heatwaves due to climate change and irrigation. Nat. Commun. 9, 2894 (2018).

    Article 

    Google Scholar 

  • Raymond, C., Matthews, T. & Horton, R. M. The emergence of heat and humidity too severe for human tolerance. Sci. Adv. 6, eaaw1838 (2020).

    Article 

    Google Scholar 

  • Zemp, D. C. et al. Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks. Nat. Commun. 8, 14681 (2017).

    Article 

    Google Scholar 

  • Staal, A. et al. Forest-rainfall cascades buffer against drought across the Amazon. Nat. Clim. Change 8, 539–543 (2018).

    Article 

    Google Scholar 

  • Lee, J.-E., Lintner, B. R., Kevin Boyce, C. & Lawrence, P. J. Land use change exacerbates tropical South American drought by sea surface temperature variability. Geophys. Res. Lett. 38, L19706 (2011).

    Google Scholar 

  • Boers, N., Marwan, N., Barbosa, H. M. J. & Kurths, J. A deforestation-induced tipping point for the South American monsoon system. Sci. Rep. 7, 41489 (2017).

    Article 

    Google Scholar 

  • Bruijnzeel, L. A. Hydrological functions of tropical forests: not seeing the soil for the trees? Agric. Ecosyst. Environ. 104, 185–228 (2004).

    Article 

    Google Scholar 

  • van Luijk, G., Cowling, R. M., Riksen, M. J. P. M. & Glenday, J. Hydrological implications of desertification: Degradation of South African semi-arid subtropical thicket. J. Arid Environ. 91, 14–21 (2013).

    Article 

    Google Scholar 

  • Robinson, D. A. et al. Experimental evidence for drought induced alternative stable states of soil moisture. Sci. Rep. 6, 20018 (2016). Manipulation experiments demonstrate the presence of drought-driven irreversible tipping points of soil moisture states, in support of previous modelling and observation-based studies.

    Article 

    Google Scholar 

  • Borrelli, P. et al. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. 8, 2013 (2017).

    Article 

    Google Scholar 

  • Panagos, P. et al. The new assessment of soil loss by water erosion in Europe. Environ. Sci. Policy 54, 438–447 (2015).

    Article 

    Google Scholar 

  • Bonfils, C. J. W. et al. Human influence on joint changes in temperature, rainfall and continental aridity. Nat. Clim. Change 10, 726–731 (2020).

    Article 

    Google Scholar 

  • Samaniego, L. et al. Anthropogenic warming exacerbates European soil moisture droughts. Nat. Clim. Change 8, 421–426 (2018).

    Article 

    Google Scholar 

  • Budyko, M. I. Climate and Life (Academic Press, 1974).

  • Malhi, Y. et al. Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proc. Natl Acad. Sci. USA 106, 20610–20615 (2009).

    Article 

    Google Scholar 

  • Saatchi, S. et al. Persistent effects of a severe drought on Amazonian forest canopy. Proc. Natl Acad. Sci. USA 110, 565–570 (2013).

    Article 

    Google Scholar 

  • Murray-Tortarolo, G. et al. The dry season intensity as a key driver of NPP trends. Geophys. Res. Lett. 43, 2632–2639 (2016).

    Article 

    Google Scholar 

  • Nepstad, D. C., Tohver, I. M., Ray, D., Moutinho, P. & Cardinot, G. Mortality of large trees and lianas following experimental drought in an Amazon forest. Ecology 88, 2259–2269 (2007).

    Article 

    Google Scholar 

  • Meir, P. et al. Threshold responses to soil moisture deficit by trees and soil in tropical rain forests: insights from field experiments. Bioscience 65, 882–892 (2015).

    Article 

    Google Scholar 

  • Brookshire, E. N. J. & Weaver, T. Long-term decline in grassland productivity driven by increasing dryness. Nat. Commun. 6, 7148 (2015).

    Article 

    Google Scholar 

  • Piao, S. et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 1, 14–27 (2019).

    Article 

    Google Scholar 

  • Berg, A. & McColl, K. A. No projected global drylands expansion under greenhouse warming. Nat. Clim. Change 11, 331–337 (2021).

    Article 

    Google Scholar 

  • Green, J. K. et al. Large influence of soil moisture on long-term terrestrial carbon uptake. Nature 565, 476–479 (2019). Shows that soil moisture variability substantially reduces the carbon land uptake due to non-linear ecological responses to water availability and land–atmosphere interactions.

    Article 

    Google Scholar 

  • Quan, Q. et al. Water scaling of ecosystem carbon cycle feedback to climate warming. Sci. Adv. 5, eaav1131 (2019).

    Article 

    Google Scholar 

  • Stocker, B. D. et al. Quantifying soil moisture impacts on light use efficiency across biomes. New Phytol. 218, 1430–1449 (2018).

    Article 

    Google Scholar 

  • Humphrey, V. et al. Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage. Nature 560, 628–631 (2018).

    Article 

    Google Scholar 

  • Kerr, D. D. & Ochsner, T. E. Soil organic carbon more strongly related to soil moisture than soil temperature in temperate grasslands. Soil Sci. Soc. Am. J. 84, 587–596 (2020).

    Article 

    Google Scholar 

  • Ahlstrom, A. et al. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 348, 895–899 (2015).

    Article 

    Google Scholar 

  • Poulter, B. et al. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509, 600–603 (2014).

    Article 

    Google Scholar 

  • Zhang, W. et al. Tundra shrubification and tree-line advance amplify arctic climate warming: results from an individual-based dynamic vegetation model. Environ. Res. Lett. 8, 034023 (2013).

    Article 

    Google Scholar 

  • Bragazza, L., Parisod, J., Buttler, A. & Bardgett, R. D. Biogeochemical plant–soil microbe feedback in response to climate warming in peatlands. Nat. Clim. Change 3, 273–277 (2013).

    Article 

    Google Scholar 

  • Knoblauch, C., Beer, C., Liebner, S., Grigoriev, M. N. & Pfeiffer, E.-M. Methane production as key to the greenhouse gas budget of thawing permafrost. Nat. Clim. Change 8, 309–312 (2018).

    Article 

    Google Scholar 

  • Natali, S. M. et al. Permafrost thaw and soil moisture driving CO2 and CH4 release from upland tundra. J. Geophys. Res. Biogeosci. 120, 525–537 (2015).

    Article 

    Google Scholar 

  • Slessarev, E. W. et al. Water balance creates a threshold in soil pH at the global scale. Nature 540, 567–569 (2016). Shows that a bimodal pattern in global soil pH distribution is regulated by annual water balance and suggests that human-driven changes in aridity can result in transitions from alkaline to acid soils, with unknown implications for soil nutrients supply and biomass production.

    Article 

    Google Scholar 

  • Moreno-Jiménez, E. et al. Aridity and reduced soil micronutrient availability in global drylands. Nat. Sustain. 2, 371–377 (2019).

    Article 

    Google Scholar 

  • Maestre, F. T. et al. Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proc. Natl Acad. Sci. USA 112, 15684–15689 (2015).

    Article 

    Google Scholar 

  • Rabbi, S. M. F. et al. Climate and soil properties limit the positive effects of land use reversion on carbon storage in Eastern Australia. Sci. Rep. 5, 17866 (2015).

    Article 

    Google Scholar 

  • Kramer, M. G. & Chadwick, O. A. Climate-driven thresholds in reactive mineral retention of soil carbon at the global scale. Nat. Clim. Change 8, 1104–1108 (2018).

    Article 

    Google Scholar 

  • Seneviratne, S. I., Lüthi, D., Litschi, M. & Schär, C. Land–atmosphere coupling and climate change in Europe. Nature 443, 205–209 (2006).

    Article 

    Google Scholar 

  • Whan, K. et al. Impact of soil moisture on extreme maximum temperatures in Europe. Weather Clim. Extremes 9, 57–67 (2015).

    Article 

    Google Scholar 

  • Hirschi, M. et al. Observational evidence for soil-moisture impact on hot extremes in southeastern Europe. Nat. Geosci. 4, 17–21 (2011).

    Article 

    Google Scholar 

  • Hauser, M., Orth, R. & Seneviratne, S. I. Role of soil moisture versus recent climate change for the 2010 heat wave in western Russia. Geophys. Res. Lett. 43, 2819–2826 (2016).

    Article 

    Google Scholar 

  • Yang, L., Sun, G., Zhi, L. & Zhao, J. Negative soil moisture-precipitation feedback in dry and wet regions. Sci. Rep. 8, 4026 (2018).

    Article 

    Google Scholar 

  • Zhou, S. et al. Soil moisture–atmosphere feedbacks mitigate declining water availability in drylands. Nat. Clim. Change 11, 38–44 (2021).

    Article 

    Google Scholar 

  • Miralles, D. G., Teuling, A. J., van Heerwaarden, C. C. & de Arellano, J. V.-G. Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation. Nat. Geosci. 7, 345–349 (2014).

    Article 

    Google Scholar 

  • Zhang, P. et al. Abrupt shift to hotter and drier climate over inner East Asia beyond the tipping point. Science 370, 1095–1099 (2020). Analyses based on tree-ring data over the past 260 years show an abrupt shift that could potentially be explained by self-amplifying feedbacks of soil moisture deficit and surface warming, which points towards risk for an irreversible tipping point in the East Asian climate system under climate change.

    Article 

    Google Scholar 

  • Wang, Y. et al. Detecting the causal effect of soil moisture on precipitation using convergent cross mapping. Sci. Rep. 8, 12171 (2018).

    Article 

    Google Scholar 

  • Feng, M. et al. Understanding the resilience of soil moisture regimes. Water Resour. Res. 55, 7541–7563 (2019).

    Article 

    Google Scholar 

  • Good, S. P., Moore, G. W. & Miralles, D. G. A mesic maximum in biological water use demarcates biome sensitivity to aridity shifts. Nat. Ecol. Evol. 1, 1883–1888 (2017).

    Article 

    Google Scholar 

  • D’Odorico, P. & Porporato, A. Preferential states in soil moisture and climate dynamics. Proc. Natl Acad. Sci. USA 101, 8848–8851 (2004).

    Article 

    Google Scholar 

  • Rodriguez-Iturbe, I., Entekhabi, D., Lee, J.-S. & Bras, R. L. Nonlinear dynamics of soil moisture at climate scales: 2. Chaotic analysis. Water Resour. Res. 27, 1907–1915 (1991).

    Article 

    Google Scholar 

  • Peterson, T. J., Saft, M., Peel, M. C. & John, A. Watersheds may not recover from drought. Science 372, 745–749 (2021).

    Article 

    Google Scholar 

  • Rockström, J. et al. Planetary boundaries: exploring the safe operating space for humanity. Ecol. Soc. 14, 32 (2009).

    Article 

    Google Scholar 

  • Zhang, Y. et al. Multi-decadal trends in global terrestrial evapotranspiration and its components. Sci. Rep. 6, 19124 (2016).

    Article 

    Google Scholar 

  • Coenders-Gerrits, A. M. J. et al. Uncertainties in transpiration estimates. Nature 506, E1–E2 (2014).

    Article 

    Google Scholar 

  • Wang, L., Good, S. P. & Caylor, K. K. Global synthesis of vegetation control on evapotranspiration partitioning. Geophys. Res. Lett. 41, 6753–6757 (2014).

    Article 

    Google Scholar 

  • Heimann, M. & Reichstein, M. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451, 289–292 (2008).

    Article 

    Google Scholar 

  • Beck, H. E. et al. MSWEP: 3-hourly 0.25° global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis data. Hydrol. Earth Syst. Sci. 21, 589–615 (2017).

    Article 

    Google Scholar 

  • Greve, P., Roderick, M. L., Ukkola, A. M. & Wada, Y. The aridity index under global warming. Environ. Res. Lett. 14, 124006 (2019).

    Article 

    Google Scholar 

  • Yang, Y., Roderick, M. L., Zhang, S., McVicar, T. R. & Donohue, R. J. Hydrologic implications of vegetation response to elevated CO2 in climate projections. Nat. Clim. Change 9, 44–48 (2018).

    Article 

    Google Scholar 

  • Ghannam, K. et al. Persistence and memory timescales in root-zone soil moisture dynamics. Water Resour. Res. 52, 1427–1445 (2016).

    Article 

    Google Scholar 

  • Entin, J. K. et al. Temporal and spatial scales of observed soil moisture variations in the extratropics. J. Geophys. Res. 105, 11865–11877 (2000).

    Article 

    Google Scholar 

  • Famiglietti, C. A., Michalak, A. M. & Konings, A. G. Extreme wet events as important as extreme dry events in controlling spatial patterns of vegetation greenness anomalies. Environ. Res. Lett. 16, 074014 (2021).

    Article 

    Google Scholar 

  • Wieners, K.-H. et al. MPI-M MPI-ESM1.2-LR model output prepared for CMIP6 CMIP historical. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.6595 (2019).

  • Jungclaus, J. et al. MPI-M MPI-ESM1.2-LR model output prepared for CMIP6 PMIP midHolocene. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.6644 (2019).

  • Winkler, K., Fuchs, R., Rounsevell, M. & Herold, M. Global land use changes are four times greater than previously estimated. Nat. Commun. 12, 2501 (2021).

    Article 

    Google Scholar 

  • Kaplan, J. O., Krumhardt, K. M. & Zimmermann, N. The prehistoric and preindustrial deforestation of Europe. Quat. Sci. Rev. 28, 3016–3034 (2009).

    Article 

    Google Scholar 

  • Dallmeyer, A. et al. Holocene vegetation transitions and their climatic drivers in MPI-ESM1.2. Clim. Past 17, 2481–2513 (2021).

    Article 

    Google Scholar 

  • Persson, L. et al. Outside the safe operating space of the planetary boundary for novel entities. Environ. Sci. Technol. 56, 1510–1521 (2022).

    Article 

    Google Scholar 

  • Jaramillo, F. & Destouni, G. Comment on ‘Planetary boundaries: Guiding human development on a changing planet’. Science 348, 1217 (2015).

    Article 

    Google Scholar 

  • Campbell, B. M. et al. Agriculture production as a major driver of the Earth system exceeding planetary boundaries. Ecol. Soci. 22, 8 (2017).

    Article 

    Google Scholar 

  • Lade, S. J. et al. Human impacts on planetary boundaries amplified by Earth system interactions. Nat. Sustain. 3, 119–128 (2020).

    Article 

    Google Scholar 

  • Wang, S. et al. Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Science 370, 1295–1300 (2020).

    Article 

    Google Scholar 

  • Wieder, W. R., Cleveland, C. C., Smith, W. K. & Todd-Brown, K. Future productivity and carbon storage limited by terrestrial nutrient availability. Nat. Geosci. 8, 441–444 (2015).

    Article 

    Google Scholar 

  • Zhu, Z. et al. Comment on ‘Recent global decline of CO2 fertilization effects on vegetation photosynthesis’. Science 373, eabg5673 (2021).

    Article 

    Google Scholar 

  • Wang, S. et al. Response to Comments on ‘Recent global decline of CO2 fertilization effects on vegetation photosynthesis’. Science 373, eabg7484 (2021).

    Article 

    Google Scholar 

  • Sang, Y. et al. Comment on ‘Recent global decline of CO2 fertilization effects on vegetation photosynthesis’. Science 373, eabg4420 (2021).

    Article 

    Google Scholar 

  • Frankenberg, C., Yin, Y., Byrne, B., He, L. & Gentine, P. Comment on ‘Recent global decline of CO2 fertilization effects on vegetation photosynthesis’. Science 373, eabg2947 (2021).

    Article 

    Google Scholar 

  • Tagesson, T. et al. Recent divergence in the contributions of tropical and boreal forests to the terrestrial carbon sink. Nat. Ecol. Evol. 4, 202–209 (2020).

    Article 

    Google Scholar 

  • Tuinenburg, O. A., Theeuwen, J. J. E. & Staal, A. High-resolution global atmospheric moisture connections from evaporation to precipitation. Earth Syst. Sci. Data 12, 3177–3188 (2020).

    Article 

    Google Scholar 

  • Adams, M. A., Buckley, T. N. & Turnbull, T. L. Diminishing CO2-driven gains in water-use efficiency of global forests. Nat. Clim. Change 10, 466–471 (2020).

    Article 

    Google Scholar 

  • Ravi, S., Breshears, D. D., Huxman, T. E. & D’Odorico, P. Land degradation in drylands: Interactions among hydrologic–aeolian erosion and vegetation dynamics. Geomorphology 116, 236–245 (2010).

    Article 

    Google Scholar 

  • Miralles, D. G. et al. Contribution of water-limited ecoregions to their own supply of rainfall. Environ. Res. Lett. 11, 124007 (2016).

    Article 

    Google Scholar 

  • Keys, P. W. et al. Analyzing precipitationsheds to understand the vulnerability of rainfall dependent regions. Biogeosciences 9, 733–746 (2012).

    Article 

    Google Scholar 

  • Korell, L., Auge, H., Chase, J. M., Harpole, W. S. & Knight, T. M. Responses of plant diversity to precipitation change are strongest at local spatial scales and in drylands. Nat. Commun. 12, 2489 (2021).

    Article 

    Google Scholar 

  • Zhou, S., Zhang, Y., Park Williams, A. & Gentine, P. Projected increases in intensity, frequency, and terrestrial carbon costs of compound drought and aridity events. Sci. Adv. 5, eaau5740 (2019).

    Article 

    Google Scholar 

  • Miner, K. R. et al. Permafrost carbon emissions in a changing Arctic. Nat. Rev. Earth Environ. 3, 55–67 (2022).

    Article 

    Google Scholar 

  • Ford, T. W. & Frauenfeld, O. W. Surface–atmosphere moisture interactions in the frozen ground regions of Eurasia. Sci. Rep. 6, 19163 (2016).

    Article 

    Google Scholar 

  • Chen, J. M. et al. Vegetation structural change since 1981 significantly enhanced the terrestrial carbon sink. Nat. Commun. 10, 4259 (2019).

    Article 

    Google Scholar 

  • Smith, W. K. et al. Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization. Nat. Clim. Change 6, 306–310 (2016).

    Article 

    Google Scholar 

  • Huntzinger, D. N. et al. Uncertainty in the response of terrestrial carbon sink to environmental drivers undermines carbon-climate feedback predictions. Sci. Rep. 7, 4765 (2017).

    Article 

    Google Scholar 

  • Jensen, L., Eicker, A., Dobslaw, H., Stacke, T. & Humphrey, V. Long-term wetting and drying trends in land water storage derived from GRACE and CMIP5 models. J. Geophys. Res. Atmos. 124, 9808–9823 (2019).

    Article 

    Google Scholar 

  • Samset, B. H., Fuglestvedt, J. S. & Lund, M. T. Delayed emergence of a global temperature response after emission mitigation. Nat. Commun. 11, 3261 (2020).

    Article 

    Google Scholar 

  • te Wierik, S. A., Gupta, J., Cammeraat, E. L. H. & Artzy-Randrup, Y. A. The need for green and atmospheric water governance. Wiley Interdiscip. Rev. Water 7, e1406 (2020). Provides rationales for the need for regulating and governing human interference with green water and atmospheric water.

    Article 

    Google Scholar 

  • Young, O. R. Institutional Dynamics: Emergent Patterns in International Environmental Governance (MIT Press, 2010).

  • Schmidt, F. in Transgovernance: Advancing Sustainability Governance (ed. Meuleman, L.) 215–234 (Springer, 2013).

  • Lal, R. et al. Soils and sustainable development goals of the United Nations: An International Union of Soil Sciences perspective. Geoderma Reg. 25, e00398 (2021).

    Article 

    Google Scholar 

  • Falkenmark, M. & Rockström, J. The new blue and green water paradigm: Breaking new ground for water pesources planning and management. J. Water Resour. Plan. Manag. 132, 129–132 (2006).

    Article 

    Google Scholar 

  • Borrelli, P. et al. Land use and climate change impacts on global soil erosion by water (2015-2070). Proc. Natl Acad. Sci. USA 117, 21994–22001 (2020).

    Article 

    Google Scholar 

  • Evans, C. D. et al. Overriding water table control on managed peatland greenhouse gas emissions. Nature 593, 548–552 (2021).

    Google Scholar 

  • Zipper, S. C. et al. Integrating the water planetary boundary with water management from local to global scales. Earths Future 8, e2019EF001377 (2020).

    Article 

    Google Scholar 

  • Häyhä, T., Lucas, P. L., van Vuuren, D. P., Cornell, S. E. & Hoff, H. From planetary boundaries to national fair shares of the global safe operating space — How can the scales be bridged? Glob. Environ. Change 40, 60–72 (2016).

    Article 

    Google Scholar 

  • Dearing, J. A. et al. Safe and just operating spaces for regional social-ecological systems. Glob. Environ. Change 28, 227–238 (2014).

    Article 

    Google Scholar 

  • Bjørn, A. et al. Challenges and opportunities towards improved application of the planetary boundary for land-system change in life cycle assessment of products. Sci. Total. Environ. 696, 133964 (2019).

    Article 

    Google Scholar 

  • Bunsen, J., Berger, M. & Finkbeiner, M. Planetary boundaries for water–A review. Ecol. Indic. 121, 107022 (2021).

    Article 

    Google Scholar 

  • Link, A., van der Ent, R., Berger, M., Eisner, S. & Finkbeiner, M. The fate of land evaporation–a global dataset. Earth Syst. Sci. Data 12, 1897–1912 (2020).

    Article 

    Google Scholar 

  • van der Ent, R. J., Savenije, H. H. G., Schaefli, B. & Steele-Dunne, S. C. Origin and fate of atmospheric moisture over continents. Water Resour. Res. 46, W09525 (2010).

    Google Scholar 

  • Schyns, J. F., Hoekstra, A. Y. & Booij, M. J. Review and classification of indicators of green water availability and scarcity. Hydrol. Earth Syst. Sci. 19, 4581–4608 (2015).

    Article 

    Google Scholar 

  • Stenzel, F., Gerten, D., Werner, C. & Jägermeyr, J. Freshwater requirements of large-scale bioenergy plantations for limiting global warming to 1.5 °C. Environ. Res. Lett. 14, 084001 (2019).

    Article 

    Google Scholar 

  • Dalby, S. Framing the Anthropocene: The good, the bad and the ugly. Anthropocene Rev. 3, 33–51 (2016).

    Article 

    Google Scholar 

  • Tainter, J. A. in The Way the Wind Blows: Climate, History, and Human Action (eds McIntosh, R. J., Tainter, J. A. & McIntosh, S. K.) 331 (Columbia University Press, 2000).

  • Ripl, W. Water: the bloodstream of the biosphere. Philos. Trans. R. Soc. Lond. B Biol. Sci. 358, 1921–1934 (2003).

    Article 

    Google Scholar 

  • Dorigo, W. et al. ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions. Remote Sens. Environ. 203, 185–215 (2017).

    Article 

    Google Scholar 

  • Grillakis, M. G., Koutroulis, A. G., Alexakis, D. D., Polykretis, C. & Daliakopoulos, I. N. Regionalizing root-zone soil moisture estimates from ESA CCI soil water index using machine learning and information on soil, vegetation, and climate. Water Resour. Res. 57, e2020WR029249 (2021).

    Article 

    Google Scholar 

  • Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

    Article 

    Google Scholar 

  • Trugman, A. T., Medvigy, D., Mankin, J. S. & Anderegg, W. R. L. Soil moisture stress as a major driver of carbon cycle uncertainty. Geophys. Res. Lett. 45, 6495–6503 (2018). Shows that the simplistic representations of soil moisture stress across global vegetation models cause major uncertainties in estimated land carbon sink under climate change.

    Article 

    Google Scholar 

  • Beyer, R. M., Krapp, M. & Manica, A. High-resolution terrestrial climate, bioclimate and vegetation for the last 120,000 years. Sci. Data 7, 236 (2020).

    Article 

    Google Scholar 

  • Allen, J. R. M. et al. Global vegetation patterns of the past 140,000 years. J. Biogeogr. 47, 2073–2090 (2020).

    Article 

    Google Scholar 

  • Kageyama, M. et al. The PMIP4 contribution to CMIP6–Part 1: Overview and over-arching analysis plan. Geosci. Model Dev. 11, 1033–1057 (2018).

    Article 

    Google Scholar 

  • Dorigo, W. et al. The International Soil Moisture Network: serving Earth system science for over a decade. Hydrol. Earth Syst. Sci. 25, 5749–5804 (2021).

    Article 

    Google Scholar 

  • Baldocchi, D. et al. FLUXNET: A new tool to study the temporal and spatial variability of ecosystem–scale carbon dioxide, water vapor, and energy flux densities. Bull. Am. Meteorol. Soc. 82, 2415–2434 (2001).

    Article 

    Google Scholar 

  • Bouaziz, L. J. E. et al. Improved understanding of the link between catchment-scale vegetation accessible storage and satellite-derived Soil Water Index. Water Resour. Res. 56, e2019WR026365 (2020).

    Article 

    Google Scholar 

  • Martens, B. et al. GLEAM v3: satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev. 10, 1903–1925 (2017).

    Article 

    Google Scholar 

  • Tian, S., Renzullo, L. J., van Dijk, A. I. J. M., Tregoning, P. & Walker, J. P. Global joint assimilation of GRACE and SMOS for improved estimation of root-zone soil moisture and vegetation response. Hydrol. Earth Syst. Sci. 23, 1067–1081 (2019).

    Article 

    Google Scholar 

  • Wang-Erlandsson, L. et al. Global root zone storage capacity from satellite-based evaporation. Hydrol. Earth Syst. Sci. 20, 1459–1481 (2016).

    Article 

    Google Scholar 

  • Fan, Y., Miguez-Macho, G., Jobbágy, E. G., Jackson, R. B. & Otero-Casal, C. Hydrologic regulation of plant rooting depth. Proc. Natl Acad. Sci. USA 114, 10572–10577 (2017). Shows that rooting depths globally are highly adaptive to hydroclimate, topography and soil hydrology, with implications for improving the representation of plant–water interactions in Earth system models.

    Article 

    Google Scholar 

  • Kleidon, A. Global datasets of rooting zone depth inferred from inverse methods. J. Clim. 17, 2714–2722 (2004).

    Article 

    Google Scholar 

  • McCormick, E. L. et al. Widespread woody plant use of water stored in bedrock. Nature 597, 225–229 (2021).

    Article 

    Google Scholar 

  • Vereecken, H. et al. Infiltration from the pedon to global grid scales: An overview and outlook for land surface modelling. Vadose Zone J. 18, 1–53 (2019).

    Article 

    Google Scholar 

  • Singh, C., Wang-Erlandsson, L., Fetzer, I., Rockström, J. & van der Ent, R. Rootzone storage capacity reveals drought coping strategies along rainforest-savanna transitions. Environ. Res. Lett. 15, 124021 (2020).

    Article 

    Google Scholar 

  • Sakschewski, B. et al. Variable tree rooting strategies improve tropical productivity and evapotranspiration in a dynamic global vegetation model. Biogeosciences 27, 1–35 (2020).

    Google Scholar 

  • Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).

    Article 

    Google Scholar 

  • Biermann, F. & Kim, R. E. The boundaries of the Planetary Boundary framework: A critical appraisal of approaches to define a “safe operating space” for humanity. Annu. Rev. Environ. Resour. 45, 497–521 (2020).

    Article 

    Google Scholar 

  • Petschel-Held, G., Schellnhuber, H.-J., Bruckner, T., Tóth, F. L. & Hasselmann, K. The tolerable windows approach: theoretical and methodological foundations. Clim. Change 41, 303–331 (1999).

    Article 

    Google Scholar 

  • Ziegler, R., Gerten, D. & Döll, P. in Global Water Ethics (eds Ziegler, R. & Groenfeldt, D.) 109–130 (Routledge, 2017).

  • Sivapalan, M. & Blöschl, G. Time scale interactions and the coevolution of humans and water. Water Resour. Res. 51, 6988–7022 (2015).

    Article 

    Google Scholar 

  • Mueller, B. et al. Benchmark products for land evapotranspiration: LandFlux-EVAL multi-data set synthesis. Hydrol. Earth Syst. Sci. 17, 3707–3720 (2013).

    Article 

    Google Scholar 

  • Oki, T. & Kanae, S. Global hydrological cycles and world water resources. Science 313, 1068–1072 (2006).

    Article 

    Google Scholar 

  • von Bloh, W. et al. Implementing the nitrogen cycle into the dynamic global vegetation, hydrology, and crop growth model LPJmL (version 5.0). Geosci. Model Dev. 11, 2789–2812 (2018).

    Article 

    Google Scholar 


  • Source: Resources - nature.com

    Groundwater extraction poses extreme threat to Doñana World Heritage Site

    Using excess heat to improve electrolyzers and fuel cells