Yao, T. et al. The imbalance of the Asian water tower. Nat. Rev. Earth Environ. https://doi.org/10.1038/s43017-022-00299-4 (2022).
Yao, T. et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Change 2, 663–667 (2012).
Google Scholar
Moelg, T., Maussion, F. & Scherer, D. Mid-latitude westerlies as a driver of glacier variability in monsoonal High Asia. Nat. Clim. Change 4, 68–73 (2014).
Google Scholar
Tapley, B. D. et al. Contributions of GRACE to understanding climate change. Nat. Clim. Change 9, 358–369 (2019).
Google Scholar
Kraaijenbrink, P. D. A., Bierkens, M. F. P., Lutz, A. F. & Immerzeel, W. W. Impact of a global temperature rise of 1.5 degrees Celsius on Asia’s glaciers. Nature 549, 257–260 (2017).
Google Scholar
Houborg, R., Rodell, M., Li, B., Reichle, R. & Zaitchik, B. F. Drought indicators based on model-assimilated Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage observations. Water Resour. Res. 48, W07525 (2012).
Google Scholar
Long, D. et al. GRACE satellite monitoring of large depletion in water storage in response to the 2011 drought in Texas. Geophys. Res. Lett. 40, 3395–3401 (2013).
Google Scholar
Long, D. et al. Drought and flood monitoring for a large karst plateau in Southwest China using extended GRACE data. Remote Sens. Environ. 155, 145–160 (2014).
Google Scholar
Reager, J. T., Thomas, B. F. & Famiglietti, J. S. River basin flood potential inferred using GRACE gravity observations at several months lead time. Nat. Geosci. 7, 589–593. (2014).
Google Scholar
Pokhrel, Y. N. et al. Model estimates of sea-level change due to anthropogenic impacts on terrestrial water storage. Nat. Geosci. 5, 389–392 (2012).
Google Scholar
Jacob, T., Wahr, J., Pfeffer, W. T. & Swenson, S. Recent contributions of glaciers and ice caps to sea level rise. Nature 482, 514–518 (2012).
Google Scholar
Immerzeel, W. W. et al. Importance and vulnerability of the world’s water towers. Nature 577, 364–369 (2020).
Google Scholar
Scanlon, B. R. et al. Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data. Proc. Natl Acad. Sci. USA 115, E1080–E1089 (2018).
Google Scholar
Pokhrel, Y. N. et al. Incorporation of groundwater pumping in a global land surface model with the representation of human impacts. Water Resour. Res. 51, 78–96 (2015).
Google Scholar
Pokhrel, Y. et al. Global terrestrial water storage and drought severity under climate change. Nat. Clim. Change 11, 226–233 (2021).
Google Scholar
Brun, F., Berthier, E., Wagnon, P., Kaab, A. & Treichler, D. A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016. Nat. Geosci. 10, 668–673 (2017).
Google Scholar
Zhao, F., Long, D., Li, X., Huang, Q. & Han, P. Rapid glacier mass loss in the Southeastern Tibetan Plateau since the year 2000 from satellite observations. Remote Sens. Environ. 270, 112853 (2022).
Google Scholar
Farinotti, D., Immerzeel, W. W., de Kok, R. J., Quincey, D. J. & Dehecq, A. Manifestations and mechanisms of the Karakoram glacier anomaly. Nat. Geosci. 13, 8–16 (2020).
Google Scholar
Forsythe, N., Fowler, H. J., Li, X.-F., Blenkinsop, S. & Pritchard, D. Karakoram temperature and glacial melt driven by regional atmospheric circulation variability. Nat. Clim. Change 7, 664–670 (2017).
Google Scholar
Zhang, G. et al. Lake volume and groundwater storage variations in Tibetan Plateau’s endorheic basin. Geophys. Res. Lett. 44, 5550–5560 (2017).
Google Scholar
Li, X. et al. High-temporal-resolution water level and storage change data sets for lakes on the Tibetan Plateau during 2000–2017 using multiple altimetric missions and Landsat-derived lake shoreline positions. Earth Syst. Sci. Data 11, 1603–1627 (2019).
Google Scholar
Wang, T. et al. Permafrost thawing puts the frozen carbon at risk over the Tibetan Plateau. Sci. Adv. 6, eaaz3513 (2020).
Google Scholar
Zheng, G. et al. Remote sensing spatiotemporal patterns of frozen soil and the environmental controls over the Tibetan Plateau during 2002–2016. Remote Sens. Environ. 247, 111927 (2020).
Google Scholar
Rodell, M. et al. Emerging trends in global freshwater availability. Nature 557, 651–659 (2018).
Google Scholar
Tapley, B. D., Bettadpur, S., Ries, J. C., Thompson, P. F. & Watkins, M. M. GRACE measurements of mass variability in the Earth system. Science 305, 503–505 (2004).
Google Scholar
Jing, W., Zhang, P. & Zhao, X. A comparison of different GRACE solutions in terrestrial water storage trend estimation over Tibetan Plateau. Sci. Rep. 9, 1765 (2019).
Google Scholar
Viviroli, D., Kummu, M., Meybeck, M., Kallio, M. & Wada, Y. Increasing dependence of lowland populations on mountain water resources. Nat. Sustain. 3, 917–928 (2020).
Google Scholar
Zhang, G., Yao, T., Xie, H., Kang, S. & Lei, Y. Increased mass over the Tibetan Plateau: from lakes or glaciers? Geophys. Res. Lett. 40, 2125–2130 (2013).
Google Scholar
Biemans, H. et al. Importance of snow and glacier meltwater for agriculture on the Indo–Gangetic Plain. Nat. Sustain. 2, 594–601 (2019).
Google Scholar
Lutz, A. F. et al. South Asian agriculture increasingly dependent on meltwater and groundwater. Nat. Clim. Change 12, 566–573 (2022).
Google Scholar
Gao, J., Yao, T., Masson-Delmotte, V., Steen-Larsen, H. C. & Wang, W. Collapsing glaciers threaten Asia’s water supplies. Nature 565, 19–21 (2019).
Google Scholar
Liu, B. et al. Causes of the outburst of Zonag Lake in Hoh Xil,Tibetan Plateau, and its impact on surrounding environment. J. Glaciol. Geocryol. 38, 305–311 (2016).
Yao, X., Liu, S., Sun, M., Guo, W. & Zhang, X. Changes of Kusai Lake in Hoh Xil region and causes of its water overflowing. Acta Geogr. Sin. 67, 689–698 (2012).
Rounce, D. R., Hock, R. & Shean, D. E. Glacier mass change in High Mountain Asia through 2100 using the open-source Python Glacier Evolution Model (PyGEM). Front. Earth Sci. 7, 331 (2020).
Google Scholar
Qin, Y. et al. Agricultural risks from changing snowmelt. Nat. Clim. Change 10, 459–465 (2020).
Google Scholar
Jain, M. et al. Groundwater depletion will reduce cropping intensity in India. Sci. Adv. 7, eabd2849 (2021).
Google Scholar
Murakami, D. & Yamagata, Y. Estimation of gridded population and GDP scenarios with spatially explicit statistical downscaling. Sustainability 11, 2106 (2019).
Google Scholar
De Stefano, L., Petersen-Perlman, J. D., Sproles, E. A., Eynard, J. & Wolf, A. T. Assessment of transboundary river basins for potential hydro-political tensions. Glob. Environ. Change 45, 35–46 (2017).
Google Scholar
Landerer, F. W. et al. Extending the global mass change data record: GRACE follow-on instrument and science data performance. Geophys. Res. Lett. 47, e2020GL088306 (2020).
Google Scholar
Scanlon, B. R. et al. Global evaluation of new GRACE mascon products for hydrologic applications. Water Resour. Res. 52, 9412–9429 (2016).
Google Scholar
Cleveland, R. B., Cleveland, W. S., McRae, J. E. & Terpenning, I. STL: a seasonal-trend decomposition procedure based on loess. J. Off. Stat. 6, 3–73 (1990).
Bergmann, I., Ramillien, G. & Frappart, F. Climate-driven interannual ice mass evolution in Greenland. Glob. Planet. Change 82-83, 1–11 (2012).
Google Scholar
Frappart, F., Ramillien, G. & Ronchail, J. Changes in terrestrial water storage versus rainfall and discharges in the Amazon basin. Int. J. Climatol. 33, 3029–3046 (2013).
Google Scholar
Rateb, A. et al. Comparison of groundwater storage changes from GRACE satellites with monitoring and modeling of major US aquifers. Water Resour. Res. 56, e2020WR027556 (2020).
Google Scholar
Huss, M. Density assumptions for converting geodetic glacier volume change to mass change. Cryosphere 7, 877–887 (2013).
Google Scholar
Wang, J., Wang, L., Li, M., Zhu, L. & Li, X. Lake area and volume variation data in the endorheic basin of the Tibetan Plateau from 1989 to 2019. Zenodo https://doi.org/10.5281/zenodo.5543615 (2021).
Sun, A. Y. et al. Combining physically based modeling and deep learning for fusing GRACE satellite data: can we learn from mismatch? Water Resour. Res. 55, 1179–1195 (2019).
Google Scholar
Govindaraju, R. S. & Artific, A. T. C. A. Artificial neural networks in hydrology. I: preliminary concepts. J. Hydrol. Eng. 5, 115–123 (2000).
Google Scholar
Sun, A. Y., Scanlon, B. R, Save, H. & Rateb, A. Reconstruction of GRACE total water storage through automated machine learning. Water Resour. Res. 57, e2020WR028666 (2020).
Sun, Z., Long, D., Yang, W., Li, X. & Pan, Y. Reconstruction of GRACE data on changes in total water storage over the global land surface and 60 basins. Water Resour. Res. 56, e2019WR026250 (2020).
Gupta, H. V., Kling, H., Yilmaz, K. K. & Martinez, G. F. Decomposition of the mean squared error and NSE performance criteria: implications for improving hydrological modelling. J. Hydrol. 377, 80–91 (2009).
Google Scholar
Kling, H., Fuchs, M. & Paulin, M. Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. J. Hydrol. 424, 264–277 (2012).
Google Scholar
Ramirez-Villegas, J., Challinor, A. J., Thornton, P. K. & Jarvis, A. Implications of regional improvement in global climate models for agricultural impact research. Environ. Res. Lett. 8, 024018 (2013).
Google Scholar
Hawkins, E., Osborne, T. M., Ho, C. K. & Challinor, A. J. Calibration and bias correction of climate projections for crop modelling: an idealised case study over Europe. Agric. For. Meteorol. 170, 19–31 (2013).
Google Scholar
Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).
Google Scholar
Li, X. et al. Evapotranspiration estimation for Tibetan Plateau headwaters using conjoint terrestrial and atmospheric water balances and multisource remote sensing. Water Resour. Res. 55, 8608–8630 (2019).
Google Scholar
Cannon, A. J., Sobie, S. R. & Murdock, T. Q. Bias correction of GCM precipitation by quantile mapping: how well do methods preserve changes in quantiles and extremes? J. Clim. 28, 6938–6959 (2015).
Google Scholar
Gutowski, W. J. et al. Temporal–spatial scales of observed and simulated precipitation in central US climate. J. Clim. 16, 3841–3847 (2003).
Google Scholar
Tan, J., Huffman, G. J., Bolvin, D. T. & Nelkin, E. J. IMERG V06: changes to the morphing algorithm. J. Atmos. Ocean. Technol. 36, 2471–2482 (2019).
Google Scholar
Wada, Y., de Graaf, I. E. M. & van Beek, L. P. H. High-resolution modeling of human and climate impacts on global water resources. J. Adv. Model. Earth Syst. 8, 735–763 (2016).
Google Scholar
Wang, J. et al. Recent global decline in endorheic basin water storages. Nat. Geosci. 11, 926–932 (2018).
Google Scholar
Hewitt, K. Glacier change, concentration, and elevation effects in the Karakoram Himalaya, Upper Indus Basin. Mt. Res. Dev. 31, 188–200 (2011).
Google Scholar
Zhang, G. Dataset of River Basins map over the TP (2016) (National Tibetan Plateau Data Center, 2019); https://doi.org/10.11888/BaseGeography.tpe.249465.file
Brun, F., Berthier, E., Wagnon, P., Kääb, A. & Treichler, D. Elevation changes of High Mountain Asia from 2000 to 2016, links to GeoTIFFs. PANGAEA https://doi.org/10.1594/PANGAEA.876545 (2017).
Li, X. et al. A high temporal resolution lake data set from multisource altimetric missions and Landsat archives of water level and storage changes on the Tibetan Plateau during 2000–2017. PANGAEA https://doi.org/10.1594/PANGAEA.898411 (2019).
Li, X. Y. et al. Supplementary data to: Climate change threatens terrestrial water storage over the Tibetan Plateau. Zenodo https://doi.org/10.5281/zenodo.6784501 (2022).
Li, X. Y. & Long, D. Supplementary code to: Climate change threatens terrestrial water storage over the Tibetan Plateau. Zenodo https://doi.org/10.5281/zenodo.6784641 (2022).
Source: Resources - nature.com