in

Climate change threatens terrestrial water storage over the Tibetan Plateau

  • Yao, T. et al. The imbalance of the Asian water tower. Nat. Rev. Earth Environ. https://doi.org/10.1038/s43017-022-00299-4 (2022).

  • Yao, T. et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Change 2, 663–667 (2012).

    Article 

    Google Scholar 

  • Moelg, T., Maussion, F. & Scherer, D. Mid-latitude westerlies as a driver of glacier variability in monsoonal High Asia. Nat. Clim. Change 4, 68–73 (2014).

    Article 

    Google Scholar 

  • Tapley, B. D. et al. Contributions of GRACE to understanding climate change. Nat. Clim. Change 9, 358–369 (2019).

    Article 

    Google Scholar 

  • Kraaijenbrink, P. D. A., Bierkens, M. F. P., Lutz, A. F. & Immerzeel, W. W. Impact of a global temperature rise of 1.5 degrees Celsius on Asia’s glaciers. Nature 549, 257–260 (2017).

    CAS 
    Article 

    Google Scholar 

  • Houborg, R., Rodell, M., Li, B., Reichle, R. & Zaitchik, B. F. Drought indicators based on model-assimilated Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage observations. Water Resour. Res. 48, W07525 (2012).

    Article 

    Google Scholar 

  • Long, D. et al. GRACE satellite monitoring of large depletion in water storage in response to the 2011 drought in Texas. Geophys. Res. Lett. 40, 3395–3401 (2013).

    Article 

    Google Scholar 

  • Long, D. et al. Drought and flood monitoring for a large karst plateau in Southwest China using extended GRACE data. Remote Sens. Environ. 155, 145–160 (2014).

    Article 

    Google Scholar 

  • Reager, J. T., Thomas, B. F. & Famiglietti, J. S. River basin flood potential inferred using GRACE gravity observations at several months lead time. Nat. Geosci. 7, 589–593. (2014).

    Article 
    CAS 

    Google Scholar 

  • Pokhrel, Y. N. et al. Model estimates of sea-level change due to anthropogenic impacts on terrestrial water storage. Nat. Geosci. 5, 389–392 (2012).

    CAS 
    Article 

    Google Scholar 

  • Jacob, T., Wahr, J., Pfeffer, W. T. & Swenson, S. Recent contributions of glaciers and ice caps to sea level rise. Nature 482, 514–518 (2012).

    CAS 
    Article 

    Google Scholar 

  • Immerzeel, W. W. et al. Importance and vulnerability of the world’s water towers. Nature 577, 364–369 (2020).

    CAS 
    Article 

    Google Scholar 

  • Scanlon, B. R. et al. Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data. Proc. Natl Acad. Sci. USA 115, E1080–E1089 (2018).

    CAS 
    Article 

    Google Scholar 

  • Pokhrel, Y. N. et al. Incorporation of groundwater pumping in a global land surface model with the representation of human impacts. Water Resour. Res. 51, 78–96 (2015).

    Article 

    Google Scholar 

  • Pokhrel, Y. et al. Global terrestrial water storage and drought severity under climate change. Nat. Clim. Change 11, 226–233 (2021).

    Article 

    Google Scholar 

  • Brun, F., Berthier, E., Wagnon, P., Kaab, A. & Treichler, D. A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016. Nat. Geosci. 10, 668–673 (2017).

    CAS 
    Article 

    Google Scholar 

  • Zhao, F., Long, D., Li, X., Huang, Q. & Han, P. Rapid glacier mass loss in the Southeastern Tibetan Plateau since the year 2000 from satellite observations. Remote Sens. Environ. 270, 112853 (2022).

    Article 

    Google Scholar 

  • Farinotti, D., Immerzeel, W. W., de Kok, R. J., Quincey, D. J. & Dehecq, A. Manifestations and mechanisms of the Karakoram glacier anomaly. Nat. Geosci. 13, 8–16 (2020).

    CAS 
    Article 

    Google Scholar 

  • Forsythe, N., Fowler, H. J., Li, X.-F., Blenkinsop, S. & Pritchard, D. Karakoram temperature and glacial melt driven by regional atmospheric circulation variability. Nat. Clim. Change 7, 664–670 (2017).

    Article 

    Google Scholar 

  • Zhang, G. et al. Lake volume and groundwater storage variations in Tibetan Plateau’s endorheic basin. Geophys. Res. Lett. 44, 5550–5560 (2017).

    Article 

    Google Scholar 

  • Li, X. et al. High-temporal-resolution water level and storage change data sets for lakes on the Tibetan Plateau during 2000–2017 using multiple altimetric missions and Landsat-derived lake shoreline positions. Earth Syst. Sci. Data 11, 1603–1627 (2019).

    Article 

    Google Scholar 

  • Wang, T. et al. Permafrost thawing puts the frozen carbon at risk over the Tibetan Plateau. Sci. Adv. 6, eaaz3513 (2020).

    CAS 
    Article 

    Google Scholar 

  • Zheng, G. et al. Remote sensing spatiotemporal patterns of frozen soil and the environmental controls over the Tibetan Plateau during 2002–2016. Remote Sens. Environ. 247, 111927 (2020).

    Article 

    Google Scholar 

  • Rodell, M. et al. Emerging trends in global freshwater availability. Nature 557, 651–659 (2018).

    CAS 
    Article 

    Google Scholar 

  • Tapley, B. D., Bettadpur, S., Ries, J. C., Thompson, P. F. & Watkins, M. M. GRACE measurements of mass variability in the Earth system. Science 305, 503–505 (2004).

    CAS 
    Article 

    Google Scholar 

  • Jing, W., Zhang, P. & Zhao, X. A comparison of different GRACE solutions in terrestrial water storage trend estimation over Tibetan Plateau. Sci. Rep. 9, 1765 (2019).

    Article 
    CAS 

    Google Scholar 

  • Viviroli, D., Kummu, M., Meybeck, M., Kallio, M. & Wada, Y. Increasing dependence of lowland populations on mountain water resources. Nat. Sustain. 3, 917–928 (2020).

    Article 

    Google Scholar 

  • Zhang, G., Yao, T., Xie, H., Kang, S. & Lei, Y. Increased mass over the Tibetan Plateau: from lakes or glaciers? Geophys. Res. Lett. 40, 2125–2130 (2013).

    Article 

    Google Scholar 

  • Biemans, H. et al. Importance of snow and glacier meltwater for agriculture on the Indo–Gangetic Plain. Nat. Sustain. 2, 594–601 (2019).

    Article 

    Google Scholar 

  • Lutz, A. F. et al. South Asian agriculture increasingly dependent on meltwater and groundwater. Nat. Clim. Change 12, 566–573 (2022).

    Article 

    Google Scholar 

  • Gao, J., Yao, T., Masson-Delmotte, V., Steen-Larsen, H. C. & Wang, W. Collapsing glaciers threaten Asia’s water supplies. Nature 565, 19–21 (2019).

    CAS 
    Article 

    Google Scholar 

  • Liu, B. et al. Causes of the outburst of Zonag Lake in Hoh Xil,Tibetan Plateau, and its impact on surrounding environment. J. Glaciol. Geocryol. 38, 305–311 (2016).

    Google Scholar 

  • Yao, X., Liu, S., Sun, M., Guo, W. & Zhang, X. Changes of Kusai Lake in Hoh Xil region and causes of its water overflowing. Acta Geogr. Sin. 67, 689–698 (2012).

    Google Scholar 

  • Rounce, D. R., Hock, R. & Shean, D. E. Glacier mass change in High Mountain Asia through 2100 using the open-source Python Glacier Evolution Model (PyGEM). Front. Earth Sci. 7, 331 (2020).

    Article 

    Google Scholar 

  • Qin, Y. et al. Agricultural risks from changing snowmelt. Nat. Clim. Change 10, 459–465 (2020).

    Article 

    Google Scholar 

  • Jain, M. et al. Groundwater depletion will reduce cropping intensity in India. Sci. Adv. 7, eabd2849 (2021).

    Article 

    Google Scholar 

  • Murakami, D. & Yamagata, Y. Estimation of gridded population and GDP scenarios with spatially explicit statistical downscaling. Sustainability 11, 2106 (2019).

    Article 

    Google Scholar 

  • De Stefano, L., Petersen-Perlman, J. D., Sproles, E. A., Eynard, J. & Wolf, A. T. Assessment of transboundary river basins for potential hydro-political tensions. Glob. Environ. Change 45, 35–46 (2017).

    Article 

    Google Scholar 

  • Landerer, F. W. et al. Extending the global mass change data record: GRACE follow-on instrument and science data performance. Geophys. Res. Lett. 47, e2020GL088306 (2020).

    Article 

    Google Scholar 

  • Scanlon, B. R. et al. Global evaluation of new GRACE mascon products for hydrologic applications. Water Resour. Res. 52, 9412–9429 (2016).

    Article 

    Google Scholar 

  • Cleveland, R. B., Cleveland, W. S., McRae, J. E. & Terpenning, I. STL: a seasonal-trend decomposition procedure based on loess. J. Off. Stat. 6, 3–73 (1990).

    Google Scholar 

  • Bergmann, I., Ramillien, G. & Frappart, F. Climate-driven interannual ice mass evolution in Greenland. Glob. Planet. Change 82-83, 1–11 (2012).

    Article 

    Google Scholar 

  • Frappart, F., Ramillien, G. & Ronchail, J. Changes in terrestrial water storage versus rainfall and discharges in the Amazon basin. Int. J. Climatol. 33, 3029–3046 (2013).

    Article 

    Google Scholar 

  • Rateb, A. et al. Comparison of groundwater storage changes from GRACE satellites with monitoring and modeling of major US aquifers. Water Resour. Res. 56, e2020WR027556 (2020).

    Article 

    Google Scholar 

  • Huss, M. Density assumptions for converting geodetic glacier volume change to mass change. Cryosphere 7, 877–887 (2013).

    Article 

    Google Scholar 

  • Wang, J., Wang, L., Li, M., Zhu, L. & Li, X. Lake area and volume variation data in the endorheic basin of the Tibetan Plateau from 1989 to 2019. Zenodo https://doi.org/10.5281/zenodo.5543615 (2021).

  • Sun, A. Y. et al. Combining physically based modeling and deep learning for fusing GRACE satellite data: can we learn from mismatch? Water Resour. Res. 55, 1179–1195 (2019).

    Article 

    Google Scholar 

  • Govindaraju, R. S. & Artific, A. T. C. A. Artificial neural networks in hydrology. I: preliminary concepts. J. Hydrol. Eng. 5, 115–123 (2000).

    Article 

    Google Scholar 

  • Sun, A. Y., Scanlon, B. R, Save, H. & Rateb, A. Reconstruction of GRACE total water storage through automated machine learning. Water Resour. Res. 57, e2020WR028666 (2020).

  • Sun, Z., Long, D., Yang, W., Li, X. & Pan, Y. Reconstruction of GRACE data on changes in total water storage over the global land surface and 60 basins. Water Resour. Res. 56, e2019WR026250 (2020).

    Google Scholar 

  • Gupta, H. V., Kling, H., Yilmaz, K. K. & Martinez, G. F. Decomposition of the mean squared error and NSE performance criteria: implications for improving hydrological modelling. J. Hydrol. 377, 80–91 (2009).

    Article 

    Google Scholar 

  • Kling, H., Fuchs, M. & Paulin, M. Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. J. Hydrol. 424, 264–277 (2012).

    Article 

    Google Scholar 

  • Ramirez-Villegas, J., Challinor, A. J., Thornton, P. K. & Jarvis, A. Implications of regional improvement in global climate models for agricultural impact research. Environ. Res. Lett. 8, 024018 (2013).

    Article 

    Google Scholar 

  • Hawkins, E., Osborne, T. M., Ho, C. K. & Challinor, A. J. Calibration and bias correction of climate projections for crop modelling: an idealised case study over Europe. Agric. For. Meteorol. 170, 19–31 (2013).

    Article 

    Google Scholar 

  • Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    Article 

    Google Scholar 

  • Li, X. et al. Evapotranspiration estimation for Tibetan Plateau headwaters using conjoint terrestrial and atmospheric water balances and multisource remote sensing. Water Resour. Res. 55, 8608–8630 (2019).

    Article 

    Google Scholar 

  • Cannon, A. J., Sobie, S. R. & Murdock, T. Q. Bias correction of GCM precipitation by quantile mapping: how well do methods preserve changes in quantiles and extremes? J. Clim. 28, 6938–6959 (2015).

    Article 

    Google Scholar 

  • Gutowski, W. J. et al. Temporal–spatial scales of observed and simulated precipitation in central US climate. J. Clim. 16, 3841–3847 (2003).

    Article 

    Google Scholar 

  • Tan, J., Huffman, G. J., Bolvin, D. T. & Nelkin, E. J. IMERG V06: changes to the morphing algorithm. J. Atmos. Ocean. Technol. 36, 2471–2482 (2019).

    Article 

    Google Scholar 

  • Wada, Y., de Graaf, I. E. M. & van Beek, L. P. H. High-resolution modeling of human and climate impacts on global water resources. J. Adv. Model. Earth Syst. 8, 735–763 (2016).

    Article 

    Google Scholar 

  • Wang, J. et al. Recent global decline in endorheic basin water storages. Nat. Geosci. 11, 926–932 (2018).

    CAS 
    Article 

    Google Scholar 

  • Hewitt, K. Glacier change, concentration, and elevation effects in the Karakoram Himalaya, Upper Indus Basin. Mt. Res. Dev. 31, 188–200 (2011).

    Article 

    Google Scholar 

  • Zhang, G. Dataset of River Basins map over the TP (2016) (National Tibetan Plateau Data Center, 2019); https://doi.org/10.11888/BaseGeography.tpe.249465.file

  • Brun, F., Berthier, E., Wagnon, P., Kääb, A. & Treichler, D. Elevation changes of High Mountain Asia from 2000 to 2016, links to GeoTIFFs. PANGAEA https://doi.org/10.1594/PANGAEA.876545 (2017).

  • Li, X. et al. A high temporal resolution lake data set from multisource altimetric missions and Landsat archives of water level and storage changes on the Tibetan Plateau during 2000–2017. PANGAEA https://doi.org/10.1594/PANGAEA.898411 (2019).

  • Li, X. Y. et al. Supplementary data to: Climate change threatens terrestrial water storage over the Tibetan Plateau. Zenodo https://doi.org/10.5281/zenodo.6784501 (2022).

  • Li, X. Y. & Long, D. Supplementary code to: Climate change threatens terrestrial water storage over the Tibetan Plateau. Zenodo https://doi.org/10.5281/zenodo.6784641 (2022).


  • Source: Resources - nature.com

    Power, laws, and planning

    Disentangling influence over group speed and direction reveals multiple patterns of influence in moving meerkat groups