Wester, P., Mishra, A., Mukherji, A. & Bhakta Shrestha, A. (eds) The Hindu Kush Himalaya Assessment: Mountains, Climate Change, Sustainability and People (Springer, 2019).
Jain, S. K., Agarwal, P. K. & Singh, V. P. in Hydrology and Water Resources of India (eds Jain, S.K. et al.) 473–511 (Springer, 2007).
Biemans, H., Siderius, C., Mishra, A. & Ahmad, B. Crop-specific seasonal estimates of irrigation-water demand in South Asia. Hydrol. Earth Syst. Sci. 20, 1971–1982 (2016).
Google Scholar
Farinotti, D. et al. A consensus estimate for the ice thickness distribution of all glaciers on Earth. Nat. Geosci. 12, 168–173 (2019).
Google Scholar
Lutz, A. F., Immerzeel, W. W., Shrestha, A. B. & Bierkens, M. F. P. Consistent increase in High Asia’s runoff due to increasing glacier melt and precipitation. Nat. Clim. Change 4, 587–592 (2014).
Google Scholar
Khanal, S. et al. Variable 21st century climate change response for rivers in High Mountain Asia at seasonal to decadal time scales. Water Resour. Res. https://doi.org/10.1029/2020WR029266 (2021).
Immerzeel, W. W. et al. Importance and vulnerability of the world’ s water towers. Nature 577, 364–369 (2019).
Google Scholar
Viviroli, D., Kummu, M., Meybeck, M., Kallio, M. & Wada, Y. Increasing dependence of lowland populations on mountain water resources. Nat. Sustain. 3, 917–928 (2020).
Google Scholar
Nie, Y. et al. Glacial change and hydrological implications in the Himalaya and Karakoram. Nat. Rev. Earth Environ. https://doi.org/10.1038/s43017-020-00124-w (2021).
Biemans, H. et al. Importance of snow and glacier meltwater for agriculture on the Indo-Gangetic Plain. Nat. Sustain. 2, 594–601 (2019).
Google Scholar
Gleeson, T., Wada, Y., Bierkens, M. F. P. & van Beek, L. P. H. Water balance of global aquifers revealed by groundwater footprint. Nature 488, 197–200 (2012).
Google Scholar
Döll, P., Schmied, H. M., Shuh, C., Portmann, F. T. & Eicker, A. Global-scale assessment of groundwater depletion and related groundwater abstractions: combining hydrological modeling with information from well observations and GRACE satellites. Water Resour. Res. 50, 5698–5720 (2014).
Google Scholar
Rodell, M., Velicogna, I. & Famiglietti, J. S. Satellite-based estimates of groundwater depletion in India. Nature 460, 999–1002 (2009).
Google Scholar
Pepin, N. et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Change 5, 424–430 (2015).
Google Scholar
Turner, A. G. & Annamalai, H. Climate change and the South Asian summer monsoon. Nat. Clim. Change 2, 587–595 (2012).
Google Scholar
Kirby, M., Mainuddin, M., Khaliq, T. & Cheema, M. Agricultural production, water use and food availability in Pakistan: historical trends, and projections to 2050. Agric. Water 179, 34–46 (2016).
Google Scholar
De Stefano, L., Petersen-Perlman, J. D., Sproles, E. A., Eynard, J. & Wolf, A. T. Assessment of transboundary river basins for potential hydro-political tensions. Glob. Environ. Change 45, 35–46 (2017).
Google Scholar
Kraaijenbrink, P. D. A., Bierkens, M. F. P., Lutz, A. F. & Immerzeel, W. W. Impact of a global temperature rise of 1.5 degrees Celsius on Asia’s glaciers. Nature https://doi.org/10.1038/nature23878 (2017).
Rounce, D. R., Hock, R. & Shean, D. E. Glacier mass change in High Mountain Asia through 2100 using the open-source Python Glacier Evolution Model (PyGEM). Front. Earth Sci. https://doi.org/10.3389/feart.2019.00331 (2020).
Hugonnet, R. et al. Accelerated global glacier mass loss in the early twenty-first century. Nature 592, 726–731 (2021).
Google Scholar
Huss, M. & Hock, R. Global-scale hydrological response to future glacier mass loss. Nat. Clim. Change https://doi.org/10.1038/s41558-017-0049-x (2018).
Kraaijenbrink, P. D. A., Stigter, E. E., Yao, T. & Immerzeel, W. W. Climate change decisive for Asia’s snow meltwater supply. Nat. Clim. Change https://doi.org/10.1038/s41558-021-01074-x (2021).
Lutz, A. F. et al. South Asian river basins in a 1.5 °C warmer world. Reg. Environ. Change 19, 833–847 (2019).
Google Scholar
Pritchard, H. D. Asia’s shrinking glaciers protect large populations from drought stress. Nature 569, 649–654 (2019).
Google Scholar
Wijngaard, R. R. et al. Future changes in hydro-climatogical extremes in the upper Indus, Ganges, and Brahmaputra river basins. PLoS ONE 12, e0190224 (2017).
Google Scholar
Van Tiel, M., Van Loon, A., Seibert, J. & Stahl, K. Hydrological response to warm and dry weather: do glaciers compensate? Hydrol. Earth Syst. Sci. Discuss. https://doi.org/10.5194/hess-2021-44 (2021).
Pokhrel, Y. et al. Global terrestrial water storage and drought severity under climate change. Nat. Clim. Change 11, 226–233 (2021).
Google Scholar
Qin, Y. et al. Agricultural risks from changing snowmelt. Nat. Clim. Change 10, 459–465 (2020).
Google Scholar
KC, S. & Lutz, W. The human core of the shared socioeconomic pathways: population scenarios by age, sex and level of education for all countries to 2100. Glob. Environ. Change 42, 181–192 (2017).
Google Scholar
Popp, A. et al. Land-use futures in the shared socio-economic pathways. Glob. Environ. Change 42, 331–345 (2017).
Google Scholar
Munia, H. A. et al. Future transboundary water stress and its drivers under climate change: a global study. Earth’s Future 8, e2019EF001321 (2020).
Google Scholar
Lutz, A. F., Maat, W., Biemans, H. & Shrestha, A. B. Selecting representative climate models for climate change impact studies: an advanced envelope-based selection approach. Int. J. Climatol. https://doi.org/10.1002/joc.4608 (2016).
Wijngaard, R. R. et al. Climate change vs. socio-economic development: understanding the South-Asian water gap. Hydrol. Earth Syst. Sci. 22, 6297–6321 (2018).
Google Scholar
Wen, S. et al. Population exposed to drought under the 1.5 °C and 2.0 °C warming in the Indus River basin. Atmos. Res. 218, 296–305 (2019).
Google Scholar
Cheema, M. J. M., Immerzeel, W. W. & Bastiaanssen, W. G. M. Spatial quantification of groundwater abstraction in the irrigated indus basin. Groundwater 52, 25–36 (2014).
Google Scholar
Siderius, C. et al. Financial feasibility of water conservation in agriculture. Earth’s Future 9, e2020EF001726 (2021).
Google Scholar
Grafton, R. Q. et al. The paradox of irrigation efficiency. Science 361, 748–750 (2018).
Google Scholar
Shah, H., Siderius, C. & Hellegers, P. Limitations to adjusting growing periods in different agroecological zones of Pakistan. Agric. Syst. 192, 103184 (2021).
Google Scholar
Gernaat, D. E. H. J., Bogaart, P. W., van Vuuren, D. P., Biemans, H. & Niessink, R. High-resolution assessment of global technical and economic hydropower potential. Nat. Energy https://doi.org/10.1038/s41560-017-0006-y (2017).
Grill, G. et al. Mapping the world’s free-flowing rivers. Nature 569, 215–221 (2019).
Google Scholar
Molden, D. J., Vaidya, R. A., Shrestha, A. B., Rasul, G. & Shrestha, M. S. Water infrastructure for the Hindu Kush Himalayas. Int. J. Water Resour. Dev. 30, 60–77 (2014).
Google Scholar
Vinca, A. et al. Transboundary cooperation a potential route to sustainable development in the Indus basin. Nat. Sustain. 4, 331–339 (2021).
Google Scholar
Rasul, G., Neupane, N., Hussain, A. & Pasakhala, B. Beyond hydropower: towards an integrated solution for water, energy and food security in South Asia. Int. J. Water Resour. Dev. 37, 466–490 (2021).
Google Scholar
Wu, X., Jeuland, M., Sadoff, C. & Whittington, D. Interdependence in water resource development in the Ganges: an economic analysis. Water Policy 15, 89–108 (2013).
Google Scholar
Gesch, D. B., Verdin, K. L. & Greenlee, S. K. New land surface digital elevation model covers the Earth. Eos Trans. AGU 80, 69–70 (2019).
Google Scholar
Lehner, B. & Grill, G. Global river hydrography and network routing: baseline data and new approaches to study the world’s large river systems. Hydrol. Process. 27, 2171–2186 (2013).
Google Scholar
Terink, W., Lutz, A. F., Simons, G. W. H., Immerzeel, W. W. & Droogers, P. SPHY v2.0: Spatial processes in HYdrology. Geosci. Model Dev. 8, 2009–2034 (2015).
Google Scholar
Paul, F., Huggel, C. & Kääb, A. Combining satellite multispectral image data and a digital elevation model for mapping debris-covered glaciers. Remote Sens. Environ. 89, 510–518 (2004).
Google Scholar
Frey, H. et al. Estimating the volume of glaciers in the Himalayan–Karakoram region using different methods. Cryosphere 8, 2313–2333 (2014).
Google Scholar
Hock, R. Temperature index melt modelling in mountain areas. J. Hydrol. 282, 104–115 (2003).
Google Scholar
Lutz, A. F., Immerzeel, W. W., Kraaijenbrink, P. D. A., Shrestha, A. B. & Bierkens, M. F. P. Climate change impacts on the upper Indus hydrology: sources, shifts and extremes. PLoS ONE 11, e0165630 (2016).
Google Scholar
Droogers, P. & Allen, R. G. Estimating reference evapotranspiration under inaccurate data conditions. Irrig. Drain. Syst. 16, 33–45 (2002).
Google Scholar
Gerten, D. et al. Global water availability and requirements for future food production. J. Hydrometeorol. 12, 885–899 (2011).
Google Scholar
Schaphoff, S. et al. Contribution of permafrost soils to the global carbon budget. Environ. Res. Lett. 8, 014026 (2013).
Google Scholar
Rost, S. et al. Agricultural green and blue water consumption and its influence on the global water system. Water Resour. Res. 44, W09405 (2008).
Google Scholar
Lehner, B. et al. Global Reservoir and Dam Database, v.1 (GRanDv1): Reservoirs, Revision 01 (NASA Socioeconomic Data and Applications Center, 2011); https://sedac.ciesin.columbia.edu/data/set/grand-v1-dams-rev01
Biemans, H. et al. Impact of reservoirs on river discharge and irrigation water supply during the 20th century. Water Resour. Res. 47, W03509 (2011).
Google Scholar
Jägermeyr, J. et al. Water savings potentials of irrigation systems: global simulation of processes and linkages. Hydrol. Earth Syst. Sci. 19, 3073–3091 (2015).
Google Scholar
Simons, G. W. H., Droogers, P., Contreras, S., Sieber, J. & Bastiaanssen, W. G. M. A novel method to quantify consumed fractions and non-consumptive use of irrigation water: application to the Indus Basin Irrigation System of Pakistan. Agric. Water Manag. 236, 106174 (2020).
Google Scholar
Keenan, T. F. et al. A constraint on historic growth in global photosynthesis due to increasing CO2. Nature 600, 253–258 (2021).
Google Scholar
Elliott, J. et al. Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proc. Natl Acad. Sci. USA 111, 3239–3244 (2014).
Google Scholar
Bijl, D. L. et al. A global analysis of future water deficit based on different allocation mechanisms. Water Resour. Res. 54, 5803–5824 (2018).
Google Scholar
de Vos, L., Biemans, H., Doelman, J. C., Stehfest, E. & Van Vuuren, D. P. Trade-offs between water needs for food, utilities, and the environment—a nexus quantification at different scales. Environ. Res. Lett. 16, 115003 (2021).
Google Scholar
Alcamo, J. et al. Development and testing of the WaterGAP 2 global model of water use and availability. Hydrol. Sci. J. 48, 317–337 (2003).
Google Scholar
Wada, Y. et al. Global depletion of groundwater resources. Geophys. Res. Lett. 37, L20402 (2010).
Google Scholar
Weedon, G. P. et al. The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA-Interim reanalysis data. Water Resour. Res. https://doi.org/10.1002/2014WR015638 (2014).
Immerzeel, W. W., Wanders, N., Lutz, A. F., Shea, J. M. & Bierkens, M. F. P. Reconciling high altitude precipitation with glacier mass balances and runoff. Hydrol. Earth Syst. Sci. 12, 4755–4784 (2015).
Harmonized World Soil Database (v.1.2) (FAO/IIASA/ISRIC/ISSCAS/JRC, 2012); https://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/ru/
Boer, F. D. HiHydroSoil: A High Resolution Soil Map of Hydraulic Properties v.1.2 (FutureWater, 2016).
Portmann, F. T., Siebert, S. & Döll, P. MIRCA2000—Global monthly irrigated and rainfed crop areas around the year 2000: a new high-resolution data set for agricultural and hydrological modeling. Glob. Biogeochem. Cycles 24, GB1011 (2010).
Google Scholar
Defourny, P. et al. GLOBCOVER: A 300 m global land cover product for 2005 using ENVISAT MERIS time series. In Proc. ISPRS Commission VII Mid-Term Symposium: Remote Sensing: From Pixels to Processes (eds Kerle, N. & Skidmore, A.) (International Society of Photogrammetry and Remote Sensing, 2007).
Wada, Y., Wisser, D. & Bierkens, M. F. P. Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources. Earth Syst. Dyn. 5, 15–40 (2014).
Google Scholar
Klein Goldewijk, K., Beusen, A., Van Drecht, G. & De Vos, M. The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years. Glob. Ecol. Biogeogr. 20, 73–86 (2011).
Google Scholar
AQUASTAT database (FAO, 2016); https://www.fao.org/aquastat/en/
Arendt, A. et al. Randolph Glacier Inventory [5.0]: A Dataset of Global Glacier Outlines, v.5.0 (Global Land Ice Measurements from Space (GLIMS), 2015); https://www.glims.org/RGI/
van Vuuren, D. P. et al. A new scenario framework for climate change research: scenario matrix architecture. Climatic Change 122, 373–386 (2014).
Google Scholar
Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).
Google Scholar
O’Neill, B. C. et al. The roads ahead: narratives for Shared Socioeconomic Pathways describing world futures in the 21st century. Glob. Environ. Change 42, 169–180 (2017).
Google Scholar
Stehfest, E., et al. Integrated Assessment of Global Environmental Change with IMAGE 3.0.—Model Description and Policy Applications (Netherlands Environmental Assessment Agency, 2014).
Bijl, D. L., Bogaart, P. W., Kram, T., de Vries, B. J. M. & van Vuuren, D. P. Long-term water demand for electricity, industry and households. Environ. Sci. Policy 55, 75–86 (2016).
Google Scholar
Doelman, J. C. et al. Exploring SSP land-use dynamics using the IMAGE model: regional and gridded scenarios of land-use change and land-based climate change mitigation. Glob. Environ. Change 48, 119–135 (2018).
Google Scholar
Hall, D. K. & Riggs, G. A. MODIS/Terra Snow Cover Monthly L3 Global 0.05Deg CMG, v.6. National Snow and Ice Data Center https://doi.org/10.5067/MODIS/MOD10CM.006 (2015).
Kääb, A., Berthier, E., Nuth, C., Gardelle, J. & Arnaud, Y. Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature 488, 495–498 (2012).
Google Scholar
Pellicciotti, F., Buergi, C., Immerzeel, W. W., Konz, M. & Shrestha, A. B. Challenges and uncertainties in hydrological modeling of remote Hindu Kush–Karakoram–Himalayan (HKH) basins: suggestions for calibration strategies. Mt. Res. Dev. 32, 39–50 (2012).
Google Scholar
Nash, J. E. & Sutcliffe, J. V. River flow forecasting through conceptual models part I—a discussion of principles. J. Hydrol. 10, 282–290 (1970).
Google Scholar
Moriasi, D. N. et al. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 50, 885–900 (2007).
Google Scholar
Food Balance Sheets. A Handbook (FAO, 2001).
Source: Resources - nature.com