in

South Asian agriculture increasingly dependent on meltwater and groundwater

  • Wester, P., Mishra, A., Mukherji, A. & Bhakta Shrestha, A. (eds) The Hindu Kush Himalaya Assessment: Mountains, Climate Change, Sustainability and People (Springer, 2019).

  • Jain, S. K., Agarwal, P. K. & Singh, V. P. in Hydrology and Water Resources of India (eds Jain, S.K. et al.) 473–511 (Springer, 2007).

  • Biemans, H., Siderius, C., Mishra, A. & Ahmad, B. Crop-specific seasonal estimates of irrigation-water demand in South Asia. Hydrol. Earth Syst. Sci. 20, 1971–1982 (2016).

    Article 

    Google Scholar 

  • Farinotti, D. et al. A consensus estimate for the ice thickness distribution of all glaciers on Earth. Nat. Geosci. 12, 168–173 (2019).

    CAS 
    Article 

    Google Scholar 

  • Lutz, A. F., Immerzeel, W. W., Shrestha, A. B. & Bierkens, M. F. P. Consistent increase in High Asia’s runoff due to increasing glacier melt and precipitation. Nat. Clim. Change 4, 587–592 (2014).

    Article 

    Google Scholar 

  • Khanal, S. et al. Variable 21st century climate change response for rivers in High Mountain Asia at seasonal to decadal time scales. Water Resour. Res. https://doi.org/10.1029/2020WR029266 (2021).

  • Immerzeel, W. W. et al. Importance and vulnerability of the world’ s water towers. Nature 577, 364–369 (2019).

    Article 
    CAS 

    Google Scholar 

  • Viviroli, D., Kummu, M., Meybeck, M., Kallio, M. & Wada, Y. Increasing dependence of lowland populations on mountain water resources. Nat. Sustain. 3, 917–928 (2020).

    Article 

    Google Scholar 

  • Nie, Y. et al. Glacial change and hydrological implications in the Himalaya and Karakoram. Nat. Rev. Earth Environ. https://doi.org/10.1038/s43017-020-00124-w (2021).

  • Biemans, H. et al. Importance of snow and glacier meltwater for agriculture on the Indo-Gangetic Plain. Nat. Sustain. 2, 594–601 (2019).

    Article 

    Google Scholar 

  • Gleeson, T., Wada, Y., Bierkens, M. F. P. & van Beek, L. P. H. Water balance of global aquifers revealed by groundwater footprint. Nature 488, 197–200 (2012).

    CAS 
    Article 

    Google Scholar 

  • Döll, P., Schmied, H. M., Shuh, C., Portmann, F. T. & Eicker, A. Global-scale assessment of groundwater depletion and related groundwater abstractions: combining hydrological modeling with information from well observations and GRACE satellites. Water Resour. Res. 50, 5698–5720 (2014).

    Article 

    Google Scholar 

  • Rodell, M., Velicogna, I. & Famiglietti, J. S. Satellite-based estimates of groundwater depletion in India. Nature 460, 999–1002 (2009).

    CAS 
    Article 

    Google Scholar 

  • Pepin, N. et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Change 5, 424–430 (2015).

    Article 

    Google Scholar 

  • Turner, A. G. & Annamalai, H. Climate change and the South Asian summer monsoon. Nat. Clim. Change 2, 587–595 (2012).

    Article 

    Google Scholar 

  • Kirby, M., Mainuddin, M., Khaliq, T. & Cheema, M. Agricultural production, water use and food availability in Pakistan: historical trends, and projections to 2050. Agric. Water 179, 34–46 (2016).

    Article 

    Google Scholar 

  • De Stefano, L., Petersen-Perlman, J. D., Sproles, E. A., Eynard, J. & Wolf, A. T. Assessment of transboundary river basins for potential hydro-political tensions. Glob. Environ. Change 45, 35–46 (2017).

    Article 

    Google Scholar 

  • Kraaijenbrink, P. D. A., Bierkens, M. F. P., Lutz, A. F. & Immerzeel, W. W. Impact of a global temperature rise of 1.5 degrees Celsius on Asia’s glaciers. Nature https://doi.org/10.1038/nature23878 (2017).

  • Rounce, D. R., Hock, R. & Shean, D. E. Glacier mass change in High Mountain Asia through 2100 using the open-source Python Glacier Evolution Model (PyGEM). Front. Earth Sci. https://doi.org/10.3389/feart.2019.00331 (2020).

  • Hugonnet, R. et al. Accelerated global glacier mass loss in the early twenty-first century. Nature 592, 726–731 (2021).

    CAS 
    Article 

    Google Scholar 

  • Huss, M. & Hock, R. Global-scale hydrological response to future glacier mass loss. Nat. Clim. Change https://doi.org/10.1038/s41558-017-0049-x (2018).

  • Kraaijenbrink, P. D. A., Stigter, E. E., Yao, T. & Immerzeel, W. W. Climate change decisive for Asia’s snow meltwater supply. Nat. Clim. Change https://doi.org/10.1038/s41558-021-01074-x (2021).

  • Lutz, A. F. et al. South Asian river basins in a 1.5 °C warmer world. Reg. Environ. Change 19, 833–847 (2019).

    Article 

    Google Scholar 

  • Pritchard, H. D. Asia’s shrinking glaciers protect large populations from drought stress. Nature 569, 649–654 (2019).

    CAS 
    Article 

    Google Scholar 

  • Wijngaard, R. R. et al. Future changes in hydro-climatogical extremes in the upper Indus, Ganges, and Brahmaputra river basins. PLoS ONE 12, e0190224 (2017).

    Article 
    CAS 

    Google Scholar 

  • Van Tiel, M., Van Loon, A., Seibert, J. & Stahl, K. Hydrological response to warm and dry weather: do glaciers compensate? Hydrol. Earth Syst. Sci. Discuss. https://doi.org/10.5194/hess-2021-44 (2021).

  • Pokhrel, Y. et al. Global terrestrial water storage and drought severity under climate change. Nat. Clim. Change 11, 226–233 (2021).

    Article 

    Google Scholar 

  • Qin, Y. et al. Agricultural risks from changing snowmelt. Nat. Clim. Change 10, 459–465 (2020).

    Article 

    Google Scholar 

  • KC, S. & Lutz, W. The human core of the shared socioeconomic pathways: population scenarios by age, sex and level of education for all countries to 2100. Glob. Environ. Change 42, 181–192 (2017).

    Article 

    Google Scholar 

  • Popp, A. et al. Land-use futures in the shared socio-economic pathways. Glob. Environ. Change 42, 331–345 (2017).

    Article 

    Google Scholar 

  • Munia, H. A. et al. Future transboundary water stress and its drivers under climate change: a global study. Earth’s Future 8, e2019EF001321 (2020).

    Article 

    Google Scholar 

  • Lutz, A. F., Maat, W., Biemans, H. & Shrestha, A. B. Selecting representative climate models for climate change impact studies: an advanced envelope-based selection approach. Int. J. Climatol. https://doi.org/10.1002/joc.4608 (2016).

  • Wijngaard, R. R. et al. Climate change vs. socio-economic development: understanding the South-Asian water gap. Hydrol. Earth Syst. Sci. 22, 6297–6321 (2018).

    Article 

    Google Scholar 

  • Wen, S. et al. Population exposed to drought under the 1.5 °C and 2.0 °C warming in the Indus River basin. Atmos. Res. 218, 296–305 (2019).

    Article 

    Google Scholar 

  • Cheema, M. J. M., Immerzeel, W. W. & Bastiaanssen, W. G. M. Spatial quantification of groundwater abstraction in the irrigated indus basin. Groundwater 52, 25–36 (2014).

    CAS 
    Article 

    Google Scholar 

  • Siderius, C. et al. Financial feasibility of water conservation in agriculture. Earth’s Future 9, e2020EF001726 (2021).

    Article 

    Google Scholar 

  • Grafton, R. Q. et al. The paradox of irrigation efficiency. Science 361, 748–750 (2018).

    CAS 
    Article 

    Google Scholar 

  • Shah, H., Siderius, C. & Hellegers, P. Limitations to adjusting growing periods in different agroecological zones of Pakistan. Agric. Syst. 192, 103184 (2021).

    Article 

    Google Scholar 

  • Gernaat, D. E. H. J., Bogaart, P. W., van Vuuren, D. P., Biemans, H. & Niessink, R. High-resolution assessment of global technical and economic hydropower potential. Nat. Energy https://doi.org/10.1038/s41560-017-0006-y (2017).

  • Grill, G. et al. Mapping the world’s free-flowing rivers. Nature 569, 215–221 (2019).

    CAS 
    Article 

    Google Scholar 

  • Molden, D. J., Vaidya, R. A., Shrestha, A. B., Rasul, G. & Shrestha, M. S. Water infrastructure for the Hindu Kush Himalayas. Int. J. Water Resour. Dev. 30, 60–77 (2014).

    Article 

    Google Scholar 

  • Vinca, A. et al. Transboundary cooperation a potential route to sustainable development in the Indus basin. Nat. Sustain. 4, 331–339 (2021).

    Article 

    Google Scholar 

  • Rasul, G., Neupane, N., Hussain, A. & Pasakhala, B. Beyond hydropower: towards an integrated solution for water, energy and food security in South Asia. Int. J. Water Resour. Dev. 37, 466–490 (2021).

    Article 

    Google Scholar 

  • Wu, X., Jeuland, M., Sadoff, C. & Whittington, D. Interdependence in water resource development in the Ganges: an economic analysis. Water Policy 15, 89–108 (2013).

    Article 

    Google Scholar 

  • Gesch, D. B., Verdin, K. L. & Greenlee, S. K. New land surface digital elevation model covers the Earth. Eos Trans. AGU 80, 69–70 (2019).

    Article 

    Google Scholar 

  • Lehner, B. & Grill, G. Global river hydrography and network routing: baseline data and new approaches to study the world’s large river systems. Hydrol. Process. 27, 2171–2186 (2013).

    Article 

    Google Scholar 

  • Terink, W., Lutz, A. F., Simons, G. W. H., Immerzeel, W. W. & Droogers, P. SPHY v2.0: Spatial processes in HYdrology. Geosci. Model Dev. 8, 2009–2034 (2015).

    Article 

    Google Scholar 

  • Paul, F., Huggel, C. & Kääb, A. Combining satellite multispectral image data and a digital elevation model for mapping debris-covered glaciers. Remote Sens. Environ. 89, 510–518 (2004).

    Article 

    Google Scholar 

  • Frey, H. et al. Estimating the volume of glaciers in the Himalayan–Karakoram region using different methods. Cryosphere 8, 2313–2333 (2014).

    Article 

    Google Scholar 

  • Hock, R. Temperature index melt modelling in mountain areas. J. Hydrol. 282, 104–115 (2003).

    Article 

    Google Scholar 

  • Lutz, A. F., Immerzeel, W. W., Kraaijenbrink, P. D. A., Shrestha, A. B. & Bierkens, M. F. P. Climate change impacts on the upper Indus hydrology: sources, shifts and extremes. PLoS ONE 11, e0165630 (2016).

    CAS 
    Article 

    Google Scholar 

  • Droogers, P. & Allen, R. G. Estimating reference evapotranspiration under inaccurate data conditions. Irrig. Drain. Syst. 16, 33–45 (2002).

    Article 

    Google Scholar 

  • Gerten, D. et al. Global water availability and requirements for future food production. J. Hydrometeorol. 12, 885–899 (2011).

    Article 

    Google Scholar 

  • Schaphoff, S. et al. Contribution of permafrost soils to the global carbon budget. Environ. Res. Lett. 8, 014026 (2013).

    CAS 
    Article 

    Google Scholar 

  • Rost, S. et al. Agricultural green and blue water consumption and its influence on the global water system. Water Resour. Res. 44, W09405 (2008).

    Article 

    Google Scholar 

  • Lehner, B. et al. Global Reservoir and Dam Database, v.1 (GRanDv1): Reservoirs, Revision 01 (NASA Socioeconomic Data and Applications Center, 2011); https://sedac.ciesin.columbia.edu/data/set/grand-v1-dams-rev01

  • Biemans, H. et al. Impact of reservoirs on river discharge and irrigation water supply during the 20th century. Water Resour. Res. 47, W03509 (2011).

    Article 

    Google Scholar 

  • Jägermeyr, J. et al. Water savings potentials of irrigation systems: global simulation of processes and linkages. Hydrol. Earth Syst. Sci. 19, 3073–3091 (2015).

    Article 

    Google Scholar 

  • Simons, G. W. H., Droogers, P., Contreras, S., Sieber, J. & Bastiaanssen, W. G. M. A novel method to quantify consumed fractions and non-consumptive use of irrigation water: application to the Indus Basin Irrigation System of Pakistan. Agric. Water Manag. 236, 106174 (2020).

    Article 

    Google Scholar 

  • Keenan, T. F. et al. A constraint on historic growth in global photosynthesis due to increasing CO2. Nature 600, 253–258 (2021).

    CAS 
    Article 

    Google Scholar 

  • Elliott, J. et al. Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proc. Natl Acad. Sci. USA 111, 3239–3244 (2014).

    CAS 
    Article 

    Google Scholar 

  • Bijl, D. L. et al. A global analysis of future water deficit based on different allocation mechanisms. Water Resour. Res. 54, 5803–5824 (2018).

    Article 

    Google Scholar 

  • de Vos, L., Biemans, H., Doelman, J. C., Stehfest, E. & Van Vuuren, D. P. Trade-offs between water needs for food, utilities, and the environment—a nexus quantification at different scales. Environ. Res. Lett. 16, 115003 (2021).

    Article 

    Google Scholar 

  • Alcamo, J. et al. Development and testing of the WaterGAP 2 global model of water use and availability. Hydrol. Sci. J. 48, 317–337 (2003).

    Article 

    Google Scholar 

  • Wada, Y. et al. Global depletion of groundwater resources. Geophys. Res. Lett. 37, L20402 (2010).

    Article 

    Google Scholar 

  • Weedon, G. P. et al. The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA-Interim reanalysis data. Water Resour. Res. https://doi.org/10.1002/2014WR015638 (2014).

  • Immerzeel, W. W., Wanders, N., Lutz, A. F., Shea, J. M. & Bierkens, M. F. P. Reconciling high altitude precipitation with glacier mass balances and runoff. Hydrol. Earth Syst. Sci. 12, 4755–4784 (2015).

    Google Scholar 

  • Harmonized World Soil Database (v.1.2) (FAO/IIASA/ISRIC/ISSCAS/JRC, 2012); https://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/ru/

  • Boer, F. D. HiHydroSoil: A High Resolution Soil Map of Hydraulic Properties v.1.2 (FutureWater, 2016).

  • Portmann, F. T., Siebert, S. & Döll, P. MIRCA2000—Global monthly irrigated and rainfed crop areas around the year 2000: a new high-resolution data set for agricultural and hydrological modeling. Glob. Biogeochem. Cycles 24, GB1011 (2010).

    Article 
    CAS 

    Google Scholar 

  • Defourny, P. et al. GLOBCOVER: A 300 m global land cover product for 2005 using ENVISAT MERIS time series. In Proc. ISPRS Commission VII Mid-Term Symposium: Remote Sensing: From Pixels to Processes (eds Kerle, N. & Skidmore, A.) (International Society of Photogrammetry and Remote Sensing, 2007).

  • Wada, Y., Wisser, D. & Bierkens, M. F. P. Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources. Earth Syst. Dyn. 5, 15–40 (2014).

    Article 

    Google Scholar 

  • Klein Goldewijk, K., Beusen, A., Van Drecht, G. & De Vos, M. The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years. Glob. Ecol. Biogeogr. 20, 73–86 (2011).

    Article 

    Google Scholar 

  • AQUASTAT database (FAO, 2016); https://www.fao.org/aquastat/en/

  • Arendt, A. et al. Randolph Glacier Inventory [5.0]: A Dataset of Global Glacier Outlines, v.5.0 (Global Land Ice Measurements from Space (GLIMS), 2015); https://www.glims.org/RGI/

  • van Vuuren, D. P. et al. A new scenario framework for climate change research: scenario matrix architecture. Climatic Change 122, 373–386 (2014).

    Article 

    Google Scholar 

  • Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    Article 

    Google Scholar 

  • O’Neill, B. C. et al. The roads ahead: narratives for Shared Socioeconomic Pathways describing world futures in the 21st century. Glob. Environ. Change 42, 169–180 (2017).

    Article 

    Google Scholar 

  • Stehfest, E., et al. Integrated Assessment of Global Environmental Change with IMAGE 3.0.—Model Description and Policy Applications (Netherlands Environmental Assessment Agency, 2014).

  • Bijl, D. L., Bogaart, P. W., Kram, T., de Vries, B. J. M. & van Vuuren, D. P. Long-term water demand for electricity, industry and households. Environ. Sci. Policy 55, 75–86 (2016).

    Article 

    Google Scholar 

  • Doelman, J. C. et al. Exploring SSP land-use dynamics using the IMAGE model: regional and gridded scenarios of land-use change and land-based climate change mitigation. Glob. Environ. Change 48, 119–135 (2018).

    Article 

    Google Scholar 

  • Hall, D. K. & Riggs, G. A. MODIS/Terra Snow Cover Monthly L3 Global 0.05Deg CMG, v.6. National Snow and Ice Data Center https://doi.org/10.5067/MODIS/MOD10CM.006 (2015).

  • Kääb, A., Berthier, E., Nuth, C., Gardelle, J. & Arnaud, Y. Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature 488, 495–498 (2012).

    Article 
    CAS 

    Google Scholar 

  • Pellicciotti, F., Buergi, C., Immerzeel, W. W., Konz, M. & Shrestha, A. B. Challenges and uncertainties in hydrological modeling of remote Hindu Kush–Karakoram–Himalayan (HKH) basins: suggestions for calibration strategies. Mt. Res. Dev. 32, 39–50 (2012).

    Article 

    Google Scholar 

  • Nash, J. E. & Sutcliffe, J. V. River flow forecasting through conceptual models part I—a discussion of principles. J. Hydrol. 10, 282–290 (1970).

    Article 

    Google Scholar 

  • Moriasi, D. N. et al. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 50, 885–900 (2007).

    Article 

    Google Scholar 

  • Food Balance Sheets. A Handbook (FAO, 2001).


  • Source: Resources - nature.com

    Changes in global DNA methylation under climatic stress in two related grasses suggest a possible role of epigenetics in the ecological success of polyploids

    Terrestrial and marine influence on atmospheric bacterial diversity over the north Atlantic and Pacific Oceans