in

Split westerlies over Europe in the early Little Ice Age

  • Hurrell, J. W. Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269, 676–679 (1995).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Woollings, T. et al. Blocking and its response to climate change. Curr. Clim. Change Rep. 4, 287–300 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Grams, C. M., Beerli, R., Pfenninger, S., Staffell, I. & Wernli, H. Balancing Europe’s wind-power output through spatial deployment informed by weather regimes. Nat. Clim. Chang. 7, 557–562 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Madonna, E., Li, C., Grams, C. M. & Woollings, T. The link between eddy-driven jet variability and weather regimes in the North Atlantic-European sector. Q. J. R. Meteorol. Soc. 143, 2960–2972 (2017).

    ADS 
    Article 

    Google Scholar 

  • Tyrlis, E. & Hoskins, B. J. Aspects of a northern hemisphere atmospheric blocking climatology. J. Atmos. Sci. 65, 1638–1652 (2008).

    ADS 
    Article 

    Google Scholar 

  • Barnston, A. G. & Livezey, R. E. Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Weather Rev. 115, 1083–1126 (1987).

    ADS 
    Article 

    Google Scholar 

  • Cattiaux, J. et al. Winter 2010 in Europe: A cold extreme in a warming climate. Geophys. Res. Lett. 37, 1–6 (2010).

    Article 

    Google Scholar 

  • Barriopedro, D., García-Herrera, R., Lupo, A. R. & Hernández, E. A climatology of northern hemisphere blocking. J. Clim. 19, 1042–1063 (2006).

    ADS 
    Article 

    Google Scholar 

  • Brunner, L., Hegerl, G. C. & Steiner, A. K. Connecting atmospheric blocking to European temperature extremes in spring. J. Clim. 30, 585–594 (2017).

    ADS 
    Article 

    Google Scholar 

  • Trouet, V. et al. Persistent positive North Atlantic Oscillation mode dominated the Medieval Climate Anomaly. Science 324, 78–80 (2009).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ortega, P. et al. A model-tested North Atlantic Oscillation reconstruction for the past millennium. Nature 523, 71–74 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Moffa-Sánchez, P. et al. Variability in the northern North Atlantic and Arctic Oceans across the last two millennia: A review. Paleoceanogr. Paleoclimatology 34, 1399–1436 (2019).

    ADS 
    Article 

    Google Scholar 

  • Brehm, N. et al. Eleven-year solar cycles over the last millennium revealed by radiocarbon in tree rings. Nat. Geosci. 14, 10–15 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Miles, M. W., Andresen, C. S., & Dylmer, C. V. Evidence for extreme export of Arctic sea ice leading the abrupt onset of the Little Ice Age. Sci. Adv. 6, aba4320 (2020).

  • Lapointe, F. & Bradley, R. S. Little Ice Age abruptly triggered by intrusion of Atlantic waters into the Nordic Seas. Sci. Adv. 7, 1–13 (2021).

    Article 

    Google Scholar 

  • Sigl, M. et al. Timing and climate forcing of volcanic eruptions for the past 2,500 years. Nature 523, 543–549 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Pinto, J. G. & Raible, C. C. Past and recent changes in the North Atlantic oscillation. Wiley Interdiscip. Rev. Clim. Chang. 3, 79–90 (2012).

    Article 

    Google Scholar 

  • Lehner, F., Raible, C. C. & Stocker, T. F. Testing the robustness of a precipitation proxy-based North Atlantic Oscillation reconstruction. Quat. Sci. Rev. 45, 85–94 (2012).

    ADS 
    Article 

    Google Scholar 

  • Trouet, V., Scourse, J. D. & Raible, C. C. North Atlantic storminess and Atlantic Meridional Overturning Circulation during the last Millennium: Reconciling contradictory proxy records of NAO variability. Glob. Planet. Chang. 84–85, 48–55 (2012).

    ADS 
    Article 

    Google Scholar 

  • Sousa, P. M. et al. Responses of European precipitation distributions and regimes to different blocking locations. Clim. Dynam. 48, 1141–1160 (2017).

    ADS 
    Article 

    Google Scholar 

  • Bueh, C. & Nakamura, H. Scandinavian pattern and its climatic impact. Q. J. Roy. Meteor. Soc. 133, 2117–2131 (2007).

    ADS 
    Article 

    Google Scholar 

  • Comas-Bru, L. & Mcdermott, F. Impacts of the EA and SCA patterns on the European twentieth century NAO-winter climate relationship. Q. J. Roy. Meteorol. Soc. 140, 354–363 (2014).

    ADS 
    Article 

    Google Scholar 

  • Moore, G. W. K., Renfrew, I. A. & Pickart, R. S. Multidecadal mobility of the North Atlantic Oscillation. J. Clim. 26, 2453–2466 (2013).

    ADS 
    Article 

    Google Scholar 

  • Woollings, T. J., Hoskins, B., Blackburn, M. & Berrisford, P. A new Rossby wave-breaking interpretation of the North Atlantic Oscillation. J. Atmos. Sci. 65, 609–626 (2008).

    ADS 
    Article 

    Google Scholar 

  • Sousa, P. M., Barriopedro, D., García-Herrera, R., Woollings, T. & Trigo, R. M. A new combined detection algorithm for blocking and subtropical ridges. J. Clim. 34, 1–64 (2021).

  • Fairchild, I. J. et al. Controls on trace element (Sr-Mg) compositions of carbonate cave waters: Implications for speleothem climatic records. Chem. Geol. 166, 255–269 (2000).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Fairchild, I. J. et al. Modification and preservation of environmental signals in speleothems. Earth-Sci. Rev. 75, 105–153 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Wassenburg, J. A. et al. Calcite Mg and Sr partition coefficients in cave environments: Implications for interpreting prior calcite precipitation in speleothems. Geochim. Cosmochim. Acta 269, 581–596 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Fairchild, I. J. & Treble, P. C. Trace elements in speleothems as recorders of environmental change. Quat. Sci. Rev. 28, 449–468 (2009).

    ADS 
    Article 

    Google Scholar 

  • Day, C. C. & Henderson, G. M. Controls on trace-element partitioning in cave-analogue calcite. Geochim. Cosmochim. Acta 120, 612–627 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Wassenburg, J. A. et al. Determination of aragonite trace element distribution coefficients from speleothem calcite–aragonite transitions. Geochim. Cosmochim. Acta 190, 347–367 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Moberg, A. et al. Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature 433, 613–617 (2005).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Carolin, S. A. et al. Precise timing of abrupt increase in dust activity in the Middle East coincident with 4.2 ka social change. Proc. Natl Acad. Sci. 116, 67–72 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Mayewski, P. A. et al. Major features and forcing of high-latitude northern hemisphere atmospheric circulation using a 110,000-year-long glaciochemical series. J. Geophys. Res. Ocean 102, 26345–26366 (1997).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Baker, A., Hellstrom, J. C., Kelly, B. F. J., Mariethoz, G. & Trouet, V. A composite annual-resolution stalagmite record of North Atlantic climate over the last three millennia. Sci. Rep. 5, 10307 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Orme, L. C. et al. Aeolian sediment reconstructions from the Scottish Outer Hebrides: Late Holocene storminess and the role of the North Atlantic Oscillation. Quat. Sci. Rev. 132, 15–25 (2016).

    ADS 
    Article 

    Google Scholar 

  • Fohlmeister, J. et al. Bunker Cave stalagmites: An archive for central European Holocene climate variability. Clim 8, 1751–1764 (2012).

    ADS 

    Google Scholar 

  • Waltgenbach, S. et al. Climate variability in central Europe during the last 2500 years reconstructed from four high-resolution multi-proxy speleothem records. Geosci. 11, 116 (2021).

  • Breitenbach, S. F. M. et al. Holocene interaction of maritime and continental climate in Central Europe: New speleothem evidence from Central Germany. Glob. Planet. Chang. 176, 144–161 (2019).

    ADS 
    Article 

    Google Scholar 

  • Sundqvist, H. S., Holmgren, K., Moberg, A., Spötl, C. & Mangini, A. Stable isotopes in a stalagmite from NW Sweden document environmental changes over the past 4000 years. Boreas 39, 77–86 (2010).

    Article 

    Google Scholar 

  • Vasskog, K., Paasche, Ø., Nesje, A., Boyle, J. F. & Birks, H. J. B. A new approach for reconstructing glacier variability based on lake sediments recording input from more than one glacier. Quat. Res. 77, 192–204 (2012).

    Article 

    Google Scholar 

  • Fohlmeister, J., Vollweiler, N., Spötl, C. & Mangini, A. COMNISPA II: Update of a mid-European isotope climate record, 11 ka to present. Holocene 23, 749–754 (2013).

    ADS 
    Article 

    Google Scholar 

  • Thatcher, D. L. et al. Hydroclimate variability from western Iberia (Portugal) during the Holocene: Insights from a composite stalagmite isotope record. Holocene 30, 966–981 (2020).

    ADS 
    Article 

    Google Scholar 

  • Martín-Chivelet, J. et al. Land surface temperature changes in Northern Iberia since 4000 yr BP, based on δ13C of speleothems. Glob. Planet. Change 77, 1–12 (2011).

    ADS 
    Article 

    Google Scholar 

  • Fleitmann, D. et al. Timing and climatic impact of Greenland interstadials recorded in stalagmites from northern Turkey. Geophys. Res. Lett. 36, L19707 (2009).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Ait Brahim, Y. et al. Speleothem records decadal to multidecadal hydroclimate variations in southwestern Morocco during the last millennium. Earth Planet. Sci. Lett. 476, 1–10 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Ait Brahim, Y. et al. Ocean and atmospheric circulation during the Holocene: Insights from western Mediterranean speleothems. Geophys. Res. Lett. 46, 7614–7623 (2019).

    ADS 
    Article 

    Google Scholar 

  • Fabiano, F. et al. Euro-Atlantic weather regimes in the PRIMAVERA coupled climate simulations: impact of resolution and mean state biases on model performance. Clim. Dyn. 54, 5031–5048 (2020).

    Article 

    Google Scholar 

  • Müller, J. et al. Holocene cooling culminates in sea ice oscillations in Fram Strait. Quat. Sci. Rev. 47, 1–14 (2012).

    ADS 
    Article 

    Google Scholar 

  • Perner, K., Moros, M., Lloyd, J. M., Jansen, E. & Stein, R. Mid to late Holocene strengthening of the East Greenland Current linked to warm subsurface Atlantic water. Quat. Sci. Rev. 129, 296–307 (2015).

    ADS 
    Article 

    Google Scholar 

  • Sha, L., Jiang, H. & Knudsen, K. L. Diatom evidence of climatic change in Holsteinsborg Dyb, west of Greenland, during the last 1200 years. Holocene 22, 347–358 (2012).

    ADS 
    Article 

    Google Scholar 

  • Miller, G. H. et al. Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocean feedbacks. Geophys. Res. Lett. 39, 1–5 (2012).

    Article 

    Google Scholar 

  • Lehner, F., Born, A., Raible, C. C. & Stocker, T. F. Amplified inception of European little Ice Age by sea ice-ocean-atmosphere feedbacks. J. Clim. 26, 7586–7602 (2013).

    ADS 
    Article 

    Google Scholar 

  • Spielhagen, R. F. et al. Enhanced modern heat transfer to the Arctic by warm Atlantic water. Science 331, 450–453 (2011).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lapointe, F. et al. Annually resolved Atlantic sea surface temperature variability over the past 2,900 years. Proc. Natl Acad. Sci. 117, 27171–27178 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kinnard, C. et al. Reconstructed changes in Arctic sea ice over the past 1,450 years. Nature 479, 509–512 (2011).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ringgaard, I. M., Yang, S., Kaas, E. & Christensen, J. H. Barents-Kara sea ice and European winters in EC-Earth. Clim. Dyn. 54, 3323–3338 (2020).

    Article 

    Google Scholar 

  • Sato, K., Inoue, J. & Watanabe, M. Influence of the Gulf Stream on the Barents Sea ice retreat and Eurasian coldness during early winter. Environ. Res. Lett. 9, 084009 (2014).

  • Crespin, E., Goosse, H., Fichefet, T. & Mann, M. E. The 15th century Arctic warming in coupled model simulations with data assimilation. Clim. Past 5, 389–401 (2009).

    Article 

    Google Scholar 

  • Honda, M., Inoue, J. & Yamane, S. Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters. Geophys. Res. Lett. 36, 1–6 (2009).

    Article 

    Google Scholar 

  • Gong, T. & Luo, D. Ural blocking as an amplifier of the Arctic sea ice decline in winter. J. Clim. 30, 2639–2654 (2017).

    ADS 
    Article 

    Google Scholar 

  • Liu, J., Curry, J. A., Wang, H., Song, M. & Horton, R. M. Impact of declining Arctic sea ice on winter snowfall. Proc. Natl Acad. Sci. 109, 4074–4079 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Moffa-Sánchez, P., Born, A., Hall, I. R., Thornalley, D. J. R. & Barker, S. Solar forcing of North Atlantic surface temperature and salinity over the past millennium. Nat. Geosci. 7, 275–278 (2014).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Schwander, M., Rohrer, M., Brönnimann, S. & Malik, A. Influence of solar variability on the occurrence of Central European weather types from 1763 to 2009. Clim. Past 13, 1199–1212 (2017).

    Article 

    Google Scholar 

  • Martin-Puertas, C. et al. Regional atmospheric circulation shifts induced by a grand solar minimum. Nat. Geosci. 5, 397–401 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Ineson, S. et al. Solar forcing of winter climate variability in the northern hemisphere. Nat. Geosci. 4, 753–757 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Woollings, T., Lockwood, M., Masato, G., Bell, C. & Gray, L. Enhanced signature of solar variability in Eurasian winter climate. Geophys. Res. Lett. 37, L20805 (2010).

  • Ait Brahim, Y. et al. Multi-decadal to centennial hydro-climate variability and linkage to solar forcing in the Western Mediterranean during the last 1000 years. Sci. Rep. 8, 1–8 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Zolotova, N. V. & Ponyavin, D. I. Is the new Grand minimum in progress? J. Geophys. Res. Sp. Phys. 119, 3281–3285 (2014).

    ADS 
    Article 

    Google Scholar 

  • Guarino, M. V. et al. Sea-ice-free Arctic during the Last Interglacial supports fast future loss. Nat. Clim. Chang. 10, 928–932 (2020).

    ADS 
    Article 

    Google Scholar 

  • Scholz, D. & Hoffmann, D. L. StalAge – An algorithm designed for construction of speleothem age models. Quat. Geochronol. 6, 369–382 (2011).

    Article 

    Google Scholar 

  • Shen, C.-C. et al. High-precision and high-resolution carbonate 230Th dating by MC-ICP-MS with SEM protocols. Geochim. Cosmochim. Acta 99, 71–86 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Lo, L. et al. Determination of element/Ca ratios in foraminifera and corals using cold- and hot-plasma techniques in inductively coupled plasma sector field mass spectrometry. J. Asian Earth Sci. 81, 115–122 (2014).

    ADS 
    Article 

    Google Scholar 


  • Source: Resources - nature.com

    From bridges to DNA: civil engineering across disciplines

    New data from the first discovered paleoparadoxiid (Desmostylia) specimen shed light into the morphological variation of the genus Neoparadoxia