Hurrell, J. W. Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269, 676–679 (1995).
Google Scholar
Woollings, T. et al. Blocking and its response to climate change. Curr. Clim. Change Rep. 4, 287–300 (2018).
Google Scholar
Grams, C. M., Beerli, R., Pfenninger, S., Staffell, I. & Wernli, H. Balancing Europe’s wind-power output through spatial deployment informed by weather regimes. Nat. Clim. Chang. 7, 557–562 (2017).
Google Scholar
Madonna, E., Li, C., Grams, C. M. & Woollings, T. The link between eddy-driven jet variability and weather regimes in the North Atlantic-European sector. Q. J. R. Meteorol. Soc. 143, 2960–2972 (2017).
Google Scholar
Tyrlis, E. & Hoskins, B. J. Aspects of a northern hemisphere atmospheric blocking climatology. J. Atmos. Sci. 65, 1638–1652 (2008).
Google Scholar
Barnston, A. G. & Livezey, R. E. Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Weather Rev. 115, 1083–1126 (1987).
Google Scholar
Cattiaux, J. et al. Winter 2010 in Europe: A cold extreme in a warming climate. Geophys. Res. Lett. 37, 1–6 (2010).
Google Scholar
Barriopedro, D., García-Herrera, R., Lupo, A. R. & Hernández, E. A climatology of northern hemisphere blocking. J. Clim. 19, 1042–1063 (2006).
Google Scholar
Brunner, L., Hegerl, G. C. & Steiner, A. K. Connecting atmospheric blocking to European temperature extremes in spring. J. Clim. 30, 585–594 (2017).
Google Scholar
Trouet, V. et al. Persistent positive North Atlantic Oscillation mode dominated the Medieval Climate Anomaly. Science 324, 78–80 (2009).
Google Scholar
Ortega, P. et al. A model-tested North Atlantic Oscillation reconstruction for the past millennium. Nature 523, 71–74 (2015).
Google Scholar
Moffa-Sánchez, P. et al. Variability in the northern North Atlantic and Arctic Oceans across the last two millennia: A review. Paleoceanogr. Paleoclimatology 34, 1399–1436 (2019).
Google Scholar
Brehm, N. et al. Eleven-year solar cycles over the last millennium revealed by radiocarbon in tree rings. Nat. Geosci. 14, 10–15 (2021).
Google Scholar
Miles, M. W., Andresen, C. S., & Dylmer, C. V. Evidence for extreme export of Arctic sea ice leading the abrupt onset of the Little Ice Age. Sci. Adv. 6, aba4320 (2020).
Lapointe, F. & Bradley, R. S. Little Ice Age abruptly triggered by intrusion of Atlantic waters into the Nordic Seas. Sci. Adv. 7, 1–13 (2021).
Google Scholar
Sigl, M. et al. Timing and climate forcing of volcanic eruptions for the past 2,500 years. Nature 523, 543–549 (2015).
Google Scholar
Pinto, J. G. & Raible, C. C. Past and recent changes in the North Atlantic oscillation. Wiley Interdiscip. Rev. Clim. Chang. 3, 79–90 (2012).
Google Scholar
Lehner, F., Raible, C. C. & Stocker, T. F. Testing the robustness of a precipitation proxy-based North Atlantic Oscillation reconstruction. Quat. Sci. Rev. 45, 85–94 (2012).
Google Scholar
Trouet, V., Scourse, J. D. & Raible, C. C. North Atlantic storminess and Atlantic Meridional Overturning Circulation during the last Millennium: Reconciling contradictory proxy records of NAO variability. Glob. Planet. Chang. 84–85, 48–55 (2012).
Google Scholar
Sousa, P. M. et al. Responses of European precipitation distributions and regimes to different blocking locations. Clim. Dynam. 48, 1141–1160 (2017).
Google Scholar
Bueh, C. & Nakamura, H. Scandinavian pattern and its climatic impact. Q. J. Roy. Meteor. Soc. 133, 2117–2131 (2007).
Google Scholar
Comas-Bru, L. & Mcdermott, F. Impacts of the EA and SCA patterns on the European twentieth century NAO-winter climate relationship. Q. J. Roy. Meteorol. Soc. 140, 354–363 (2014).
Google Scholar
Moore, G. W. K., Renfrew, I. A. & Pickart, R. S. Multidecadal mobility of the North Atlantic Oscillation. J. Clim. 26, 2453–2466 (2013).
Google Scholar
Woollings, T. J., Hoskins, B., Blackburn, M. & Berrisford, P. A new Rossby wave-breaking interpretation of the North Atlantic Oscillation. J. Atmos. Sci. 65, 609–626 (2008).
Google Scholar
Sousa, P. M., Barriopedro, D., García-Herrera, R., Woollings, T. & Trigo, R. M. A new combined detection algorithm for blocking and subtropical ridges. J. Clim. 34, 1–64 (2021).
Fairchild, I. J. et al. Controls on trace element (Sr-Mg) compositions of carbonate cave waters: Implications for speleothem climatic records. Chem. Geol. 166, 255–269 (2000).
Google Scholar
Fairchild, I. J. et al. Modification and preservation of environmental signals in speleothems. Earth-Sci. Rev. 75, 105–153 (2006).
Google Scholar
Wassenburg, J. A. et al. Calcite Mg and Sr partition coefficients in cave environments: Implications for interpreting prior calcite precipitation in speleothems. Geochim. Cosmochim. Acta 269, 581–596 (2020).
Google Scholar
Fairchild, I. J. & Treble, P. C. Trace elements in speleothems as recorders of environmental change. Quat. Sci. Rev. 28, 449–468 (2009).
Google Scholar
Day, C. C. & Henderson, G. M. Controls on trace-element partitioning in cave-analogue calcite. Geochim. Cosmochim. Acta 120, 612–627 (2013).
Google Scholar
Wassenburg, J. A. et al. Determination of aragonite trace element distribution coefficients from speleothem calcite–aragonite transitions. Geochim. Cosmochim. Acta 190, 347–367 (2016).
Google Scholar
Moberg, A. et al. Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature 433, 613–617 (2005).
Google Scholar
Carolin, S. A. et al. Precise timing of abrupt increase in dust activity in the Middle East coincident with 4.2 ka social change. Proc. Natl Acad. Sci. 116, 67–72 (2019).
Google Scholar
Mayewski, P. A. et al. Major features and forcing of high-latitude northern hemisphere atmospheric circulation using a 110,000-year-long glaciochemical series. J. Geophys. Res. Ocean 102, 26345–26366 (1997).
Google Scholar
Baker, A., Hellstrom, J. C., Kelly, B. F. J., Mariethoz, G. & Trouet, V. A composite annual-resolution stalagmite record of North Atlantic climate over the last three millennia. Sci. Rep. 5, 10307 (2015).
Google Scholar
Orme, L. C. et al. Aeolian sediment reconstructions from the Scottish Outer Hebrides: Late Holocene storminess and the role of the North Atlantic Oscillation. Quat. Sci. Rev. 132, 15–25 (2016).
Google Scholar
Fohlmeister, J. et al. Bunker Cave stalagmites: An archive for central European Holocene climate variability. Clim 8, 1751–1764 (2012).
Google Scholar
Waltgenbach, S. et al. Climate variability in central Europe during the last 2500 years reconstructed from four high-resolution multi-proxy speleothem records. Geosci. 11, 116 (2021).
Breitenbach, S. F. M. et al. Holocene interaction of maritime and continental climate in Central Europe: New speleothem evidence from Central Germany. Glob. Planet. Chang. 176, 144–161 (2019).
Google Scholar
Sundqvist, H. S., Holmgren, K., Moberg, A., Spötl, C. & Mangini, A. Stable isotopes in a stalagmite from NW Sweden document environmental changes over the past 4000 years. Boreas 39, 77–86 (2010).
Google Scholar
Vasskog, K., Paasche, Ø., Nesje, A., Boyle, J. F. & Birks, H. J. B. A new approach for reconstructing glacier variability based on lake sediments recording input from more than one glacier. Quat. Res. 77, 192–204 (2012).
Google Scholar
Fohlmeister, J., Vollweiler, N., Spötl, C. & Mangini, A. COMNISPA II: Update of a mid-European isotope climate record, 11 ka to present. Holocene 23, 749–754 (2013).
Google Scholar
Thatcher, D. L. et al. Hydroclimate variability from western Iberia (Portugal) during the Holocene: Insights from a composite stalagmite isotope record. Holocene 30, 966–981 (2020).
Google Scholar
Martín-Chivelet, J. et al. Land surface temperature changes in Northern Iberia since 4000 yr BP, based on δ13C of speleothems. Glob. Planet. Change 77, 1–12 (2011).
Google Scholar
Fleitmann, D. et al. Timing and climatic impact of Greenland interstadials recorded in stalagmites from northern Turkey. Geophys. Res. Lett. 36, L19707 (2009).
Google Scholar
Ait Brahim, Y. et al. Speleothem records decadal to multidecadal hydroclimate variations in southwestern Morocco during the last millennium. Earth Planet. Sci. Lett. 476, 1–10 (2017).
Google Scholar
Ait Brahim, Y. et al. Ocean and atmospheric circulation during the Holocene: Insights from western Mediterranean speleothems. Geophys. Res. Lett. 46, 7614–7623 (2019).
Google Scholar
Fabiano, F. et al. Euro-Atlantic weather regimes in the PRIMAVERA coupled climate simulations: impact of resolution and mean state biases on model performance. Clim. Dyn. 54, 5031–5048 (2020).
Google Scholar
Müller, J. et al. Holocene cooling culminates in sea ice oscillations in Fram Strait. Quat. Sci. Rev. 47, 1–14 (2012).
Google Scholar
Perner, K., Moros, M., Lloyd, J. M., Jansen, E. & Stein, R. Mid to late Holocene strengthening of the East Greenland Current linked to warm subsurface Atlantic water. Quat. Sci. Rev. 129, 296–307 (2015).
Google Scholar
Sha, L., Jiang, H. & Knudsen, K. L. Diatom evidence of climatic change in Holsteinsborg Dyb, west of Greenland, during the last 1200 years. Holocene 22, 347–358 (2012).
Google Scholar
Miller, G. H. et al. Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocean feedbacks. Geophys. Res. Lett. 39, 1–5 (2012).
Google Scholar
Lehner, F., Born, A., Raible, C. C. & Stocker, T. F. Amplified inception of European little Ice Age by sea ice-ocean-atmosphere feedbacks. J. Clim. 26, 7586–7602 (2013).
Google Scholar
Spielhagen, R. F. et al. Enhanced modern heat transfer to the Arctic by warm Atlantic water. Science 331, 450–453 (2011).
Google Scholar
Lapointe, F. et al. Annually resolved Atlantic sea surface temperature variability over the past 2,900 years. Proc. Natl Acad. Sci. 117, 27171–27178 (2020).
Google Scholar
Kinnard, C. et al. Reconstructed changes in Arctic sea ice over the past 1,450 years. Nature 479, 509–512 (2011).
Google Scholar
Ringgaard, I. M., Yang, S., Kaas, E. & Christensen, J. H. Barents-Kara sea ice and European winters in EC-Earth. Clim. Dyn. 54, 3323–3338 (2020).
Google Scholar
Sato, K., Inoue, J. & Watanabe, M. Influence of the Gulf Stream on the Barents Sea ice retreat and Eurasian coldness during early winter. Environ. Res. Lett. 9, 084009 (2014).
Crespin, E., Goosse, H., Fichefet, T. & Mann, M. E. The 15th century Arctic warming in coupled model simulations with data assimilation. Clim. Past 5, 389–401 (2009).
Google Scholar
Honda, M., Inoue, J. & Yamane, S. Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters. Geophys. Res. Lett. 36, 1–6 (2009).
Google Scholar
Gong, T. & Luo, D. Ural blocking as an amplifier of the Arctic sea ice decline in winter. J. Clim. 30, 2639–2654 (2017).
Google Scholar
Liu, J., Curry, J. A., Wang, H., Song, M. & Horton, R. M. Impact of declining Arctic sea ice on winter snowfall. Proc. Natl Acad. Sci. 109, 4074–4079 (2012).
Google Scholar
Moffa-Sánchez, P., Born, A., Hall, I. R., Thornalley, D. J. R. & Barker, S. Solar forcing of North Atlantic surface temperature and salinity over the past millennium. Nat. Geosci. 7, 275–278 (2014).
Google Scholar
Schwander, M., Rohrer, M., Brönnimann, S. & Malik, A. Influence of solar variability on the occurrence of Central European weather types from 1763 to 2009. Clim. Past 13, 1199–1212 (2017).
Google Scholar
Martin-Puertas, C. et al. Regional atmospheric circulation shifts induced by a grand solar minimum. Nat. Geosci. 5, 397–401 (2012).
Google Scholar
Ineson, S. et al. Solar forcing of winter climate variability in the northern hemisphere. Nat. Geosci. 4, 753–757 (2011).
Google Scholar
Woollings, T., Lockwood, M., Masato, G., Bell, C. & Gray, L. Enhanced signature of solar variability in Eurasian winter climate. Geophys. Res. Lett. 37, L20805 (2010).
Ait Brahim, Y. et al. Multi-decadal to centennial hydro-climate variability and linkage to solar forcing in the Western Mediterranean during the last 1000 years. Sci. Rep. 8, 1–8 (2018).
Google Scholar
Zolotova, N. V. & Ponyavin, D. I. Is the new Grand minimum in progress? J. Geophys. Res. Sp. Phys. 119, 3281–3285 (2014).
Google Scholar
Guarino, M. V. et al. Sea-ice-free Arctic during the Last Interglacial supports fast future loss. Nat. Clim. Chang. 10, 928–932 (2020).
Google Scholar
Scholz, D. & Hoffmann, D. L. StalAge – An algorithm designed for construction of speleothem age models. Quat. Geochronol. 6, 369–382 (2011).
Google Scholar
Shen, C.-C. et al. High-precision and high-resolution carbonate 230Th dating by MC-ICP-MS with SEM protocols. Geochim. Cosmochim. Acta 99, 71–86 (2012).
Google Scholar
Lo, L. et al. Determination of element/Ca ratios in foraminifera and corals using cold- and hot-plasma techniques in inductively coupled plasma sector field mass spectrometry. J. Asian Earth Sci. 81, 115–122 (2014).
Google Scholar
Source: Resources - nature.com