in

The control of waterborne pathogenic bacteria in fresh water using a biologically active filter

[adace-ad id="91168"]
  • Holland, R. A. et al. Global impacts of energy demand on the freshwater resources of nations. Proc. Natl Acad. Sci. U.S.A. 112, E6707–E6716 (2015).

    CAS 
    Article 

    Google Scholar 

  • Gleick, P. H. & Palaniappan, M. Peak water limits to freshwater withdrawal and use. Proc. Natl Acad. Sci. U.S.A. 107, 11155–11162 (2010).

    CAS 
    Article 

    Google Scholar 

  • Oki, T. & Kanae, S. Global hydrological cycles and world water resources. Science. 313, 1068–1072 (2006).

    CAS 
    Article 

    Google Scholar 

  • Postel, S. L., Daily, G. C. & Ehrlich, P. R. Human Appropriation of Renewable Fresh Water. Science. 271, 785–788 (1996).

    CAS 
    Article 

    Google Scholar 

  • United Nations Children’s Fund (UNICEF) & World Health Organization (WHO). Progress on household drinking water, sanitation and hygiene 2000-2017. Special focus on inequalities. https://www.unicef.org/media/55276/file/Progress on drinking water, sanitation and hygiene 2019.pdf (2019).

  • Prüss-Ustün, A. et al. Burden of disease from inadequate water, sanitation and hygiene for selected adverse health outcomes: An updated analysis with a focus on low- and middle-income countries. Int. J. Hyg. Environ. Health 222, 765 (2019).

  • Caprioli, A., Morabito, S., Bruégre, H. & Oswald, E. Enterohaemorrhagic Escherichia coli: emerging issues on virulence and modes of transmission. Vet. Res. 36, 289–311 (2005).

    CAS 
    Article 

    Google Scholar 

  • Vital, M., Fuchslin, H. P., Hammes, F. & Egli, T. Growth of Vibrio cholerae O1 Ogawa Eltor in freshwater. Microbiology 153, 1993–2001 (2007).

    CAS 
    Article 

    Google Scholar 

  • Agudelo Higuita, N. I. & Huycke, M. M. Enterococcal Disease, Epidemiology, and Implications for Treatment. in Enterococci: From Commensals to Leading Causes of Drug Resistant Infection 47–72 (Massachusetts Eye and Ear Infirmary, 2014).

  • Paton, J. C. & Paton, A. W. Pathogenesis and diagnosis of Shiga toxin-producing Escherichia coli infections. Clin. Microbiol. Rev. 11, 450–479 (1998).

    CAS 
    Article 

    Google Scholar 

  • Bellamy, W. D., Silverman, G. P., Hendricks, D. W. & Logsdon, G. S. Removing Giardia cysts with slow sand filtration. J. Am. Water Works Assoc. 77, 52–60 (1985).

  • Fogel, D., Isaac-Renton, J., Guasparini, R., Moorehead, W. & Removing, O. J. giardia and cryptosporidium by slow sand filtration. JAWWA, Res. Technol. 3, 77–84 (1993).

    Article 

    Google Scholar 

  • Hijnen, W. A. M., Schijven, J. F., Bonné, P., Visser, A. & Medema, G. J. Elimination of viruses, bacteria and protozoan oocysts by slow sand filtration. Water Sci. Technol. 50, 147–154 (2004).

    CAS 
    Article 

    Google Scholar 

  • Campos, L. C., Su, M. F. J., Graham, N. J. D. & Smith, S. R. Biomass development in slow sand filters. Water Res. 36, 4543–4551 (2002).

    CAS 
    Article 

    Google Scholar 

  • Basu, O. D., Dhawan, S. & Black, K. Applications of biofiltration in drinking water treatment – a review. J. Chem. Technol. Biotechnol. 91, 585–595 (2016).

    CAS 
    Article 

    Google Scholar 

  • Terry, L. G. & Summers, R. S. Biodegradable organic matter and rapid-rate biofilter performance: A review. Water Res. 128, 234–245 (2018).

    CAS 
    Article 

    Google Scholar 

  • Loh, Z. Z. et al. Shifting from conventional to organic filter media in wastewater biofiltration treatment: a review. Appl. Sci. 2021, Vol. 11, Page 8650 11, 8650 (2021).

    CAS 

    Google Scholar 

  • Bennett, A. Drinking water: Pathogen removal from water – technologies and techniques. Filtr. Sep. 45, 14–16 (2008).

    CAS 
    Article 

    Google Scholar 

  • Di Cristo, C., Esposito, G. & Leopardi, A. Modelling trihalomethanes formation in water supply systems. Environ. Technol. 34, 61–70 (2013).

    Article 
    CAS 

    Google Scholar 

  • Pooi, C. K. & Ng, H. Y. Review of low-cost point-of-use water treatment systems for developing communities. npj Clean Water 2018 11 1, 11 (2018).

    Article 

    Google Scholar 

  • Flemming, H.-C. et al. Biofilms: an emergent form of bacterial life. Nat. Rev. Microbiol. 14, 563–575 (2016).

    CAS 
    Article 

    Google Scholar 

  • Fu, J. et al. Pilot investigation of two-stage biofiltration for removal of natural organic matter in drinking water treatment. Chemosphere 166, 311–322 (2017).

    CAS 
    Article 

    Google Scholar 

  • Chen, F. et al. Kinetics of natural organic matter (NOM) removal during drinking water biofiltration using different NOM characterization approaches. Water Res. 104, 361–370 (2016).

    CAS 
    Article 

    Google Scholar 

  • McKie, M. J., Ziv-El, M. C., Taylor-Edmonds, L., Andrews, R. C. & Kirisits, M. J. Biofilter scaling procedures for organics removal: A potential alternative to piloting. Water Res. 151, 87–97 (2019).

    CAS 
    Article 

    Google Scholar 

  • de Vries, J. Soil filtration of wastewater effluent and the mechanism of pore clogging. J. Water Pollut. Control Fed. 44, 565–573 (1972).

    Google Scholar 

  • Métivier, R., Bourven, I., Labanowski, J. & Guibaud, G. Interaction of erythromycin ethylsuccinate and acetaminophen with protein fraction of extracellular polymeric substances (EPS) from various bacterial aggregates. Environ. Sci. Pollut. Res. 20, 7275–7285 (2013).

    Article 
    CAS 

    Google Scholar 

  • Writer, J. H., Barber, L. B., Ryan, J. N. & Bradley, P. M. Biodegradation and attenuation of steroidal hormones and alkylphenols by stream biofilms and sediments. Environ. Sci. Technol. 45, 4370–4376 (2011).

    CAS 
    Article 

    Google Scholar 

  • Flemming, H.-C. Biofilms. in Encyclopedia of Life Sciences (John Wiley & Sons, Ltd, 2008). https://doi.org/10.1002/9780470015902.a0000342.pub2.

  • Kragh, K. N. et al. Role of multicellular aggregates in biofilm formation. MBio 7, e00237 (2016).

    CAS 
    Article 

    Google Scholar 

  • Grumbein, S., Opitz, M. & Lieleg, O. Selected metal ions protect Bacillus subtilis biofilms from erosion †. Metallomics 6, 1441 (2014).

    CAS 
    Article 

    Google Scholar 

  • Fu, J. et al. Removal of pharmaceuticals and personal care products by two-stage biofiltration for drinking water treatment. Sci. Total Environ. 664, 240–248 (2019).

    CAS 
    Article 

    Google Scholar 

  • Nemani, V. A., McKie, M. J., Taylor-Edmonds, L. & Andrews, R. C. Impact of biofilter operation on microbial community structure and performance. J. Water Process Eng. 24, 35–41 (2018).

    Article 

    Google Scholar 

  • Beutel, M. W. & Larson, L. Pathogen removal from urban pond outflow using rock biofilters. Ecol. Eng. 78, 72–78 (2014).

    Article 

    Google Scholar 

  • Wendt, C. et al. Microbial removals by a novel biofilter water treatment system. Am. J. Trop. Med. Hyg. 92, 765–772 (2015).

    Article 

    Google Scholar 

  • Granger, H. C., Stoddart, A. K. & Gagnon, G. A. Direct biofiltration for manganese removal from surface water. J. Environ. Eng. 140, 04014006 (2014).

    Article 
    CAS 

    Google Scholar 

  • Srivastava, N. K. & Majumder, C. B. Novel biofiltration methods for the treatment of heavy metals from industrial wastewater. J. Hazard. Mater. 151, 1–8 (2008).

    CAS 
    Article 

    Google Scholar 

  • Fu, J. et al. Removal of disinfection byproduct (DBP) precursors in water by two-stage biofiltration treatment. Water Res. 123, 224–235 (2017).

    CAS 
    Article 

    Google Scholar 

  • McKie, M. J., Andrews, S. A. & Andrews, R. C. Conventional drinking water treatment and direct biofiltration for the removal of pharmaceuticals and artificial sweeteners: A pilot-scale approach. Sci. Total Environ. 544, 10–17 (2016).

    CAS 
    Article 

    Google Scholar 

  • Crognale, S. et al. Biological As(III) oxidation in biofilters by using native groundwater microorganisms. Sci. Total Environ. 651, 93–102 (2019).

    CAS 
    Article 

    Google Scholar 

  • Klayman, B. J., Volden, P. A., Stewart, P. S. & Camper, A. K. Escherichia coli O157:H7 requires colonizing partner to adhere and persist in a capillary flow cell. Environ. Sci. Technol. 43, 2105–2111 (2009).

    CAS 
    Article 

    Google Scholar 

  • Bauman, W. J., Nocker, A., Jones, W. L. & Camper, A. K. Retention of a model pathogen in a porous media biofilm. Biofouling 25, 229–240 (2009).

    CAS 
    Article 

    Google Scholar 

  • Nocker, A., Burr, M. & Camper, A. Pathogens in water and biofilms. In Microbiology of waterborne diseases: microbiological aspects and risks: Second Edition 3–32 (Academic Press, 2013). https://doi.org/10.1016/B978-0-12-415846-7.00001-9.

  • Li, J., McLellan, S. & Ogawa, S. Accumulation and fate of green fluorescent labeled Escherichia coli in laboratory-scale drinking water biofilters. Water Res. 40, 3023–3028 (2006).

    CAS 
    Article 

    Google Scholar 

  • Rendueles, O. & Ghigo, J.-M. Mechanisms of competition in biofilm communities. Microbiol. Spectr. 3, 1–14 (2015).

  • Hibbing, M. E., Fuqua, C., Parsek, M. R. & Peterson, S. B. Bacterial competition: Surviving and thriving in the microbial jungle. Nat. Rev. Microbiol. 8, 15–25 (2010).

    CAS 
    Article 

    Google Scholar 

  • Aoki, S. K. et al. A widespread family of polymorphic contact-dependent toxin delivery systems in bacteria. Nature 468, 439–442 (2010).

    CAS 
    Article 

    Google Scholar 

  • MacIntyre, D. L., Miyata, S. T., Kitaoka, M. & Pukatzki, S. The Vibrio cholerae type VI secretion system displays antimicrobial properties. Proc. Natl Acad. Sci. U.S.A. 107, 19520–19524 (2010).

    CAS 
    Article 

    Google Scholar 

  • Ławniczak, Ł., Marecik, R. & Chrzanowski, Ł. Contributions of biosurfactants to natural or induced bioremediation. Appl. Microbiol. Biotechnol. 97, 2327 (2013).

    Article 
    CAS 

    Google Scholar 

  • Cornforth, D. M. & Foster, K. R. Competition sensing: the social side of bacterial stress responses. Nat. Rev. Microbiol. 2013 114 11, 285–293 (2013).

    CAS 

    Google Scholar 

  • Legnani, P., Leoni, E., Rapuano, S., Turin, D. & Valenti, C. Survival and growth of Pseudomonas aeruginosa in natural mineral water: a 5-year study. Int. J. Food Microbiol. 53, 153–158 (1999).

    CAS 
    Article 

    Google Scholar 

  • Moll, D. M., Summers, R. S., Fonseca, A. C. & Matheis, W. Impact of temperature on drinking water biofilter performance and microbial community structure. Environ. Sci. Technol. 33, 2377–2382 (1999).

    CAS 
    Article 

    Google Scholar 

  • Hozalski, R. M., Bouwer, E. J. & Goel, S. Removal of natural organic matter (NOM) from drinking water supplies by ozone-biofiltration. Water Sci. Technol. 40, 157–163 (1999).

    CAS 
    Article 

    Google Scholar 

  • Schmidt, K. D., Tümmler, B. & Römling, U. Comparative genome mapping of Pseudomonas aeruginosa PAO with P. aeruginosa C, which belongs to a major clone in cystic fibrosis patients and aquatic habitats. J. Bacteriol. 178, 85 (1996).

    CAS 
    Article 

    Google Scholar 

  • Nigaud, Y. et al. Biofilm-induced modifications in the proteome of Pseudomonas aeruginosa planktonic cells. Biochim. Biophys. Acta – Proteins Proteom. 1804, 957–966 (2010).

    CAS 
    Article 

    Google Scholar 

  • Von Ohle, C. et al. Real-time microsensor measurement of local metabolic activities in ex vivo dental biofilms exposed to sucrose and treated with chlorhexidine. Appl. Environ. Microbiol. 76, 2326 (2010).

    Article 
    CAS 

    Google Scholar 

  • Nescerecka, A., Juhna, T. & Hammes, F. Identifying the underlying causes of biological instability in a full-scale drinking water supply system. Water Res. 135, 11–21 (2018).

    CAS 
    Article 

    Google Scholar 

  • Prest, E. I., Hammes, F., Kötzsch, S., Van Loosdrecht, M. C. M. & Vrouwenvelder, J. S. A systematic approach for the assessment of bacterial growth-controlling factors linked to biological stability of drinking water in distribution systems. Water Sci. Technol. Water Supply 16, 865–880 (2016).

    CAS 
    Article 

    Google Scholar 

  • Liang, K., Sobsey, M. & Stauber, C. E. Improving Household Drinking Water Quality: Use of Biosand Filter in Cambodia. https://scholarworks.gsu.edu/iph_facpub (2010).

  • Fabiszewski De Aceituno, A. M., Stauber, C. E., Walters, A. R., Meza Sanchez, R. E. & Sobsey, M. D. A randomized controlled trial of the plastic-housing biosand filter and its impact on diarrheal disease in Copan, Honduras. Am. J. Trop. Med. Hyg. 86, 913–921 (2012).

    Article 

    Google Scholar 

  • Miettinen, I. T., Vartiainen, T. & Martikainen, P. J. Phosphorus and bacterial growth in drinking water. Appl. Environ. Microbiol. 63, 3242–3245 (1997).

    CAS 
    Article 

    Google Scholar 

  • Keinänen, M. M. et al. The microbial community structure of drinking water biofilms can be affected by phosphorus availability. Appl. Environ. Microbiol. 68, 434–439 (2002).

    Article 
    CAS 

    Google Scholar 

  • United Nations (UN). Transforming Our World: The 2030 Agenda for Sustainable Development. in A New Era in Global Health 529–567, https://doi.org/10.1891/9780826190123.ap02 (2018).

  • Serra, M. O. D. E. & Schnitzer, M. Extraction of humic acid by alkali and chelating resin. Can. J. Soil Sci. 52, 365–374 (1972).

    Article 

    Google Scholar 

  • Smith, E. J., Davison, W. & Hamilton-Taylor, J. Methods for preparing synthetic freshwaters. Water Res. 36, 1286–1296 (2002).

    CAS 
    Article 

    Google Scholar 

  • Sobsey, M. D. Managing Water in the Home: Accelerated Health Gains from Improved Water Supply Water, Sanitation and Health Department of Protection of the Human Environment World Health Organization Geneva. https://apps.who.int/iris/bitstream/handle/10665/67319/WHO_SDE_WSH_02.07.pdf?sequence=1&isAllowed=y (2002).

  • Carratalà, A. et al. Solar disinfection of viruses in polyethylene terephthalate bottles. Appl. Environ. Microbiol. 82, 279–288 (2016).

  • Attisani, M. Can solar technology generate clean water for developing nations? Renew. Energy Focus 17, 138–139 (2016).

  • Chaidez, C. et al. Point-of-use Unit Based on Gravity Ultrafiltration Removes Waterborne Gastrointestinal Pathogens from Untreated Water Sources in Rural Communities. Wilderness Environ. Med. 27, 379–385 (2016).

  • Clayton, G. E., Thorn, R. M. S. & Reynolds, D. M. Development of a novel off-grid drinking water production system integrating electrochemically activated solutions and ultrafiltration membranes. J. Water Process Eng. 30, 100480 (2017).

  • Baig, S. A., Mahmood, Q., Nawab, B., Shafqat, M. N. & Pervez, A. Improvement of drinking water quality by using plant biomass through household biosand filter – A decentralized approach. Ecol. Eng. 37, 1842–1848 (2011).


  • Source: Resources - nature.com

    Pursuing progress at the nanoscale

    MIT engineers design surfaces that make water boil more efficiently