in

Unintended consequences of climate change mitigation for African river basins

[adace-ad id="91168"]
  • 1.

    Lamontagne, J., Reed, P., Marangoni, G., Keller, K. & Garner, G. Robust abatement pathways to tolerable climate futures require immediate global action. Nat. Clim. Change 9, 290–294 (2019).

    Google Scholar 

  • 2.

    Luderer, G. et al. Residual fossil CO2 emissions in 1.5–2 °C pathways. Nat. Clim. Change 8, 626–633 (2018).

    CAS 

    Google Scholar 

  • 3.

    van Vuuren, D., Hof, A., van Sluisveld, M. & Riahi, K. Open discussion of negative emissions is urgently needed. Nat. Energy 2, 902–904 (2017).

    Google Scholar 

  • 4.

    Santos Da Silva, S. et al. The Paris pledges and the energy–water–land nexus in Latin America: exploring implications of greenhouse gas emission reductions. PLoS ONE 14, e0215013 (2019).

  • 5.

    Fujimori, S. et al. A multi-model assessment of food security implications of climate change mitigation. Nat. Sustain. 2, 386–396 (2019).

    Google Scholar 

  • 6.

    Rogelj, J., McCollum, D., O’Neill, B. & Riahi, K. 2020 emissions levels required to limit warming to below 2 °C. Nat. Clim. Change 3, 405–412 (2013).

    CAS 

    Google Scholar 

  • 7.

    Tavoni, M. et al. Post-2020 climate agreements in the major economies assessed in the light of global models. Nat. Clim. Change 5, 119–126 (2015).

    Google Scholar 

  • 8.

    Garner, G., Reed, P. & Keller, K. Climate risk management requires explicit representation of societal trade-offs. Climatic Change 134, 713–723 (2016).

    Google Scholar 

  • 9.

    Dearing, J. et al. Safe and just operating spaces for regional social–ecological systems. Glob. Environ. Change 28, 227–238 (2014).

    Google Scholar 

  • 10.

    Kling, H., Stanzel, P. & Preishuber, M. Impact modelling of water resources development and climate scenarios on Zambezi River discharge. J. Hydrol. Reg. Stud. 1, 17–43 (2014).

    Google Scholar 

  • 11.

    Payet-Burin, R., Kromann, M., Pereira-Cardenal, S., Strzepek, K. & Bauer-Gottwein, P. WHAT-IF: an open-source decision support tool for water infrastructure investment planning within the water–energy–food–climate nexus. Hydrol. Earth Syst. Sci. 23, 4129–4152 (2019).

    Google Scholar 

  • 12.

    Fant, C., Gebretsadik, Y., McCluskey, A. & Strzepek, K. An uncertainty approach to assessment of climate change impacts on the Zambezi River basin. Clim. Change 130, 35–48 (2015).

    CAS 

    Google Scholar 

  • 13.

    Spalding-Fechera, R., Joyceb, B. & Winklerc, H. Climate change and hydropower in the Southern African Power Pool and Zambezi River basin: system-wide impacts and policy implications. Energy Policy 103, 84–97 (2017).

    Google Scholar 

  • 14.

    GCAM v4.3 Documentation: Global Change Assessment Model (GCAM) (JGCRI, 2017).

  • 15.

    Thomson, A. et al. RCP 4.5: a pathway for stabilization of radiative forcing by 2100. Clim. Change 109, 77–94 (2011).

    CAS 

    Google Scholar 

  • 16.

    Clarke, L. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) Ch. 6 (Cambridge Univ. Press, 2014).

  • 17.

    Calvin, K. et al. The SSP4: a world of deepening inequality. Glob. Environ. Change 42, 284–296 (2017).

    Google Scholar 

  • 18.

    van Vuuren, D. et al. The shared socio-economic pathways: trajectories for human development and global environmental change. Glob. Environ. Change 42, 148–152 (2017).

    Google Scholar 

  • 19.

    Kriegler, E., Edmonds, J. & Hallegatte, S. A new scenario framework for climate change research: the concept of shared climate policy assumptions. Climatic Change 122, 401–414 (2014).

    Google Scholar 

  • 20.

    Riahi, K. et al. The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Glob. Environ. Change 42, 153–168 (2017).

    Google Scholar 

  • 21.

    Lamontagne, J. et al. Large ensemble analytic framework for consequence-driven discovery of climate change scenarios. Earth’s Future 6, 488–504, (2018).

  • 22.

    Li, X. et al. Tethys–a Python package for spatial and temporal downscaling of global water withdrawals. J. Open Res. Softw. 6, 9 (2018).

  • 23.

    Huang, Z. et al. Global agricultural green and blue water consumption under future climate and land use changes. J. Hydrol. 574, 242–256 (2019).

    Google Scholar 

  • 24.

    van Vuuren, D. et al. The representative concentration pathways: an overview. Climatic Change 109, 5–31 (2011).

  • 25.

    Sadoff, C., Whittington, D. & Grey, D. Africa’s International Rivers: An Economic Perspective (World Bank, 2003).

  • 26.

    Beilfuss, R. in The Wetland Book (ed. Finlayson, C.) 1–9 (Springer, 2016).

  • 27.

    The Zambezi River Basin. A Multi-Sector Investment Opportunities Analysis (World Bank, 2010).

  • 28.

    Jeuland, M. & Whittington, D. Water resources planning under climate change: assessing the robustness of real options for the Blue Nile. Water Resour. Res. 50, 2086–2107 (2014).

    Google Scholar 

  • 29.

    Warner, J. J. S., Jones, E., Ansari, M. & De Vries, L. The fantasy of the Grand Inga hydroelectric project on the River Congo. Water 11, 407 (2019).

    Google Scholar 

  • 30.

    Winemiller, K. et al. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351, 128–129 (2016).

    CAS 

    Google Scholar 

  • 31.

    Conway, D. et al. Climate and southern Africa’s water–energy–food nexus. Nat. Clim. Change 5, 837–846 (2015).

    Google Scholar 

  • 32.

    Strategic Plan for the Zambezi Watercourse 2018–2040 (ZAMCOM, 2019).

  • 33.

    Cervigni, R., Liden, R., Neumann, J. & Strzepek, K. Enhancing the Climate Resilience of Africa’s Infrastructure: The Power and Water Sectors (World Bank, 2015).

  • 34.

    World Database of Key Biodiversity Areas (BirdLife International, 2018); www.keybiodiversityareas.org

  • 35.

    Beilfuss, R. & dos Santos, D. Program for the Sustainable Management of Cahora Bassa Dam and the Lower Zambezi Valley. Working Paper http://www.xitizap.com/zambeze-hydrochanges.pdf (2001).

  • 36.

    Coello Coello, C., Lamont, G. & Veldhuizen, D. V. Evolutionary Algorithms for Solving Multi-Objective Problems (Springer, 2007).

  • 37.

    Tilmant, A., Beevers, L. & Muyunda, B. Restoring a flow regime through the coordinated operation of a multireservoir system: the case of the Zambezi River basin. Water Resour. Res. 46, W07533 (2010).

  • 38.

    Rulli, M., Saviori, A. & D’Odorico, P. Global land and water grabbing. Proc. Natl Acad. Sci. USA 110, 892–897 (2013).

    CAS 

    Google Scholar 

  • 39.

    Zarfl, C., Lumsdon, A., Berlekamp, J., Tydecks, L. & Tockner, K. A global boom in hydropower dam construction. Aquat. Sci. 77, 161–170 (2015).

    Google Scholar 

  • 40.

    Graham, N. et al. Humans drive future water scarcity changes across all shared socioeconomic pathways. Environ. Res. Lett. 15, 014007 (2020).

  • 41.

    Liu, L., Hejazi, M., Iyer, G. & Forman, B. Implications of water constraints on electricity capacity expansion in the United States. Nat. Sustain. 2, 206–213 (2019).

    Google Scholar 

  • 42.

    McCollum, D., Gambhir, A., Rogelj, J. & Wilson, C. Energy modellers should explore extremes more systematically in scenarios. Nat. Energy 5, 104–107 (2020).

    Google Scholar 

  • 43.

    Schlosberg, D. & Collins, L. From environmental to climate justice: climate change and the discourse of environmental justice. Wiley Interdiscip. Rev. Clim. Change 5, 359–374 (2014).

    Google Scholar 

  • 44.

    Taconet, N., Méjean, A. & Guivarch, C. Influence of climate change impacts and mitigation costs on inequality between countries. Climatic Change 160, 15–34 (2020).

  • 45.

    Lindström, G., Johansson, B., Persson, M., Gardelin, M. & Bergström, S. Development and test of the distributed HBV-96 hydrological model. J. Hydrol. 201, 272–288 (1997).

    Google Scholar 

  • 46.

    Akhtar, M., Ahmad, N. & Booij, M. Use of regional climate model simulations as input for hydrological models for the Hindukush–Karakorum–Himalaya region. Hydrol. Earth Syst. Sci. 13, 1075–1089 (2009).

    Google Scholar 

  • 47.

    Bergström, S. et al. in Climate Change and Energy Systems Impacts, Risks and Adaptation in the Nordic and Baltic Countries (eds Thorsteinsson, T. & Björnsson, H.) 13–146 (Nordic Council of Ministers, 2012).

  • 48.

    Vrochidou, A., Tsanis, I., Grillakis, M. & Koutroulis, A. The impact of climate change on hydrometeorological droughts at a basin scale. J. Hydrol. 476, 290–301 (2013).

    Google Scholar 

  • 49.

    Hamududu, B. & Killingtveit, A. Hydropower production in future climate scenarios; the case for the Zambezi River. Energies 9, 502 (2016).

  • 50.

    Funk, C., Peterson, P. & Landsfeld, M. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes Sci. Data 2, 150066 (2015).

  • 51.

    Chaney, N., Sheffield, J., Villarini, G. & Wood, E. Development of a high-resolution gridded daily meteorological dataset over sub-Saharan Africa: spatial analysis of trends in climate extremes. J. Clim. 27, 5815–5835 (2014).

    Google Scholar 

  • 52.

    Soncini-Sessa, R., Castelletti, A. & Weber, E. Integrated and Participatory Water Resources Management: Theory (Elsevier, 2007).

  • 53.

    Celeste, A. & Billib, M. Evaluation of stochastic reservoir operation optimization models. Adv. Water Res. 32, 1429–1443 (2009).

    Google Scholar 

  • 54.

    AQUASTAT – FAO’s Global Information System on Water and Agriculture. FAO https://www.fao.org/aquastat/en/geospatial-information/global-maps-irrigated-areas/map-quality

  • 55.

    Castelletti, A., Pianosi, F. & Soncini-Sessa, R. Water reservoir control under economic, social and environmental constraints. Automatica 44, 1595–1607 (2008).

    Google Scholar 

  • 56.

    Bertoni, F., Castelletti, A., Giuliani, M. & Reed, P. Discovering dependencies, trade-offs, and robustness in joint dam design and operation: an ex-post assessment of the Kariba dam. Earth’s Future 7, 1367–1390 (2019).

    Google Scholar 

  • 57.

    Giuliani, M., Castelletti, A., Pianosi, F., Mason, E. & Reed, P. Curses, tradeoffs, and scalable management: advancing evolutionary multi-objective direct policy search to improve water reservoir operations. J. Water Resour. Plan. Manage. 142, 04015050 (2016).

  • 58.

    Busoniu, L., Ernst, D., De Schutter, B. & Babuska, R. Cross-entropy optimization of control policies with adaptive basis functions. IEEE Trans. Syst. Man Cybern. B 41, 196–209 (2011).

    Google Scholar 

  • 59.

    Hadka, D. & Reed, P. Borg: an auto-adaptive many-objective evolutionary computing framework. Evol. Comput. 21, 231–259 (2013).

    Google Scholar 

  • 60.

    Giuliani, M., Quinn, J., Herman, J., Castelletti, A. & Reed, P. Scalable multiobjective control for large-scale water resources systems under uncertainty. IEEE Trans. Control Syst. Technol. 26, 1492–1499 (2018).

    Google Scholar 

  • 61.

    Blöschl, G. et al. Twenty-three unsolved problems in hydrology (UPH)—a community perspective. Hydrol. Sci. J. 64, 1141–1158 (2019).

    Google Scholar 

  • 62.

    Elsawah, S. et al. Eight grand challenges in socio-environmental systems modeling. Socioenviron. Syst. Model. 2, 16226–16226 (2020).

    Google Scholar 

  • 63.

    Giorgi, F., Jones, C. & Asrar, G. R. Addressing climate information needs at the regional level: the CORDEX framework. World Meteorol. Org. Bull. 58, 175–183 (2009).

  • 64.

    Dosio, A. et al. What can we know about future precipitation in Africa? Robustness, significance and added value of projections from a large ensemble of regional climate models. Clim. Dyn. 53, 5833–5858 (2019).

    Google Scholar 

  • 65.

    Dolan, F. et al. Evaluating the economic impact of water scarcity in a changing world. Nat. Commun. 12, 1915 (2021).

  • 66.

    Zhang, X. et al. Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdiscip. Rev. Clim. Change 2, 851–870 (2011).

    Google Scholar 

  • 67.

    Mosnier, A. et al. Modeling impact of development trajectories and a global agreement on reducing emissions from deforestation on Congo basin forests by 2030. Environ. Resour. Econ. 57, 505–525 (2014).

    Google Scholar 

  • 68.

    Hattermann, F. et al. Sources of uncertainty in hydrological climate impact assessment: a cross-scale study. Environ. Res. Lett. 13, 015006 (2018).

    Google Scholar 

  • 69.

    Giuliani, M. & Lamontagne, J. R. First release of ZambeziWatercourse_GCAM code (v1.0-alpha). Zenodo https://doi.org/10.5281/zenodo.5726941 (2021).


  • Source: Resources - nature.com

    Richard Leakey (1944–2022)

    Preparing global online learners for the clean energy transition