in

Composition, structure and robustness of Lichen guilds

[adace-ad id="91168"]
  • Spribille, T. et al. Basidiomycete yeasts in the cortex of ascomycete macrolichens. Science 353, 488–492 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hawksworth, D. L. & Grube, M. Lichens redefined as complex ecosystems. New Phytol. 227, 1281 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jung, P. et al. Lichens bite the dust-a bioweathering scenario in the atacama desert. iScience 23, 101647 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Seneviratne, G. & Indrasena, I. Nitrogen fixation in lichens is important for improved rock weathering. J. Biosci. 31, 639–643 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Nybakken, L., Solhaug, K. A., Bilger, W. & Gauslaa, Y. The lichens Xanthoria elegans and Cetraria islandica maintain a high protection against uv-b radiation in arctic habitats. Oecologia 140, 211–216 (2004).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Peksa, O. & Škaloud, P. Do photobionts influence the ecology of lichens? A case study of environmental preferences in symbiotic green alga asterochloris (trebouxiophyceae). Mol. Ecol. 20, 3936–3948 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Friedmann, E. I. & Galun, M. Desert algae, lichens and fungi. Desert Biol. 2, 165–212 (1974).

    Article 

    Google Scholar 

  • Conti, M. E. & Cecchetti, G. Biological monitoring: Lichens as bioindicators of air pollution assessment—a review. Environ. Pollut. 114, 471–492 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Van Herk, C., Mathijssen-Spiekman, E. & De Zwart, D. Long distance nitrogen air pollution effects on lichens in Europe. Lichenologist 35, 347–359 (2003).

    Article 

    Google Scholar 

  • Osyczka, P., Lenart-Boroń, A., Boroń, P. & Rola, K. Lichen-forming fungi in postindustrial habitats involve alternative photobionts. Mycologia 113, 43–55 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Margulis, L. & Fester, R. Symbiosis as a Source of Evolutionary Innovation: Speciation and Morphogenesis (MIT press, 1991).

    Google Scholar 

  • Solé, R. et al. Synthetic collective intelligence. Biosystems 148, 47–61 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Dal Forno, M. et al. Extensive photobiont sharing in a rapidly radiating cyanolichen clade. Mol. Ecol. 30, 1755–1776 (2021).

    Article 

    Google Scholar 

  • Nishiguchi, M. K. Cospeciation between hosts and symbionts. In Symbiosis 757–774 (Springer, 2001).

  • Hill, D. J. Asymmetric co-evolution in the lichen symbiosis caused by a limited capacity for adaptation in the photobiont. Bot. Rev. 75, 326–338 (2009).

    Article 

    Google Scholar 

  • Muggia, L., Pérez-Ortega, S., Fryday, A., Spribille, T. & Grube, M. Global assessment of genetic variation and phenotypic plasticity in the lichen-forming species Tephromela atra. Fungal Divers. 64, 233–251 (2014).

    Article 

    Google Scholar 

  • Vančurová, L., Muggia, L., Peksa, O., Řídká, T. & Škaloud, P. The complexity of symbiotic interactions influences the ecological amplitude of the host: A case study in stereocaulon (lichenized ascomycota). Mol. Ecol. 27, 3016–3033 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Peksa, O., Gebouská, T., Škvorová, Z., Vančurová, L. & Škaloud, P. The guilds in green algal lichens-an insight into the life of terrestrial symbiotic communities. FEMS Microbiol. Ecol. 98, fiac008 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Wagner, M. et al. Macroclimatic conditions as main drivers for symbiotic association patterns in lecideoid lichens along the transantarctic mountains, ross sea region, antarctica. Sci. Rep. 11, 1–15 (2021).

    Article 
    MathSciNet 

    Google Scholar 

  • Nascimbene, J. & Marini, L. Epiphytic lichen diversity along elevational gradients: Biological traits reveal a complex response to water and energy. J. Biogeogr. 42, 1222–1232 (2015).

    Article 

    Google Scholar 

  • Galloway, D. Lichen biogeography. Lichen Biol. 2, 315–35 (1996).

    Google Scholar 

  • Vančurová, L., Malíček, J., Steinová, J. & Škaloud, P. Choosing the right life partner: Ecological drivers of lichen symbiosis. Front. Microbiol. 12, 769304 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Škvorová, Z. et al. Promiscuity in lichens follows clear rules: Partner switching in cladonia is regulated by climatic factors and soil chemistry. Front. Microbiol. 12, 56 (2021).

    Google Scholar 

  • Medeiros, I. D. et al. Turnover of lecanoroid mycobionts and their trebouxia photobionts along an elevation gradient in bolivia highlights the role of environment in structuring the lichen symbiosis. Front. Microbiol. 2021, 3859 (2021).

    Google Scholar 

  • Marini, L., Nascimbene, J. & Nimis, P. L. Large-scale patterns of epiphytic lichen species richness: Photobiont-dependent response to climate and forest structure. Sci. Total Environ. 409, 4381–4386 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Saini, K. C., Nayaka, S. & Bast, F. Diversity of lichen photobionts: Their coevolution and bioprospecting potential. Microb. Divers. Ecosyst. Sustain. Biotechnol. Appl. 2019, 307–323 (2019).

    Google Scholar 

  • Ivens, A. B., von Beeren, C., Blüthgen, N. & Kronauer, D. J. Studying the complex communities of ants and their symbionts using ecological network analysis. Annu. Rev. Entomol. 61, 353–371 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ziegler, M., Eguíluz, V. M., Duarte, C. M. & Voolstra, C. R. Rare symbionts may contribute to the resilience of coral-algal assemblages. ISME J. 12, 161–172 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Rikkinen, J. et al. Ecological and evolutionary role of photobiont-mediated guilds in lichens. Symbiosis 2003, 256 (2003).

    Google Scholar 

  • Belinchón, R., Yahr, R. & Ellis, C. J. Interactions among species with contrasting dispersal modes explain distributions for epiphytic lichens. Ecography 38, 762–768 (2015).

    Article 

    Google Scholar 

  • Muggia, L. et al. The symbiotic playground of lichen thalli-a highly flexible photobiont association in rock-inhabiting lichens. FEMS Microbiol. Ecol. 85, 313–323 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rikkinen, J., Oksanen, I. & Lohtander, K. Lichen guilds share related cyanobacterial symbionts. Science 297, 357 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kaasalainen, U., Tuovinen, V., Mwachala, G., Pellikka, P. & Rikkinen, J. Complex interaction networks among cyanolichens of a tropical biodiversity hotspot. Front. Microbiol. 12, 1246 (2021).

    Article 

    Google Scholar 

  • Werth, S. Fungal-algal interactions in Ramalina menziesii and its associated epiphytic lichen community. Lichenologist 44, 543–560 (2012).

    Article 

    Google Scholar 

  • O’Brien, H. E., Miadlikowska, J. & Lutzoni, F. Assessing population structure and host specialization in lichenized cyanobacteria. New Phytol. 198, 557–566 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Pino-Bodas, R. & Stenroos, S. Global biodiversity patterns of the photobionts associated with the genus cladonia (lecanorales, ascomycota). Microb. Ecol. 82, 173–187 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Miadlikowska, J. et al. New insights into classification and evolution of the lecanoromycetes (pezizomycotina, ascomycota) from phylogenetic analyses of three ribosomal rna-and two protein-coding genes. Mycologia 98, 1088–1103 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chagnon, P.-L., Magain, N., Miadlikowska, J. & Lutzoni, F. Species diversification and phylogenetically constrained symbiont switching generated high modularity in the lichen genus peltigera. J. Ecol. 107, 1645–1661 (2019).

    Article 

    Google Scholar 

  • Bascompte, J. & Jordano, P. Plant-animal mutualistic networks: The architecture of biodiversity. Annu. Rev. Ecol. Evol. Syst. 38, 567–593 (2007).

    Article 
    MATH 

    Google Scholar 

  • Olesen, J. M., Bascompte, J., Dupont, Y. L. & Jordano, P. The modularity of pollination networks. Proc. Natl. Acad. Sci. 104, 19891–19896 (2007).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Weitz, J. S. et al. Phage-bacteria infection networks. Trends Microbiol. 21, 82–91 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Maliet, O., Loeuille, N. & Morlon, H. An individual-based model for the eco-evolutionary emergence of bipartite interaction networks. Ecol. Lett. 23, 1623–1634 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Fortuna, M. A. et al. Nestedness versus modularity in ecological networks: Two sides of the same coin?. J. Anim. Ecol. 2010, 811–817 (2010).

    Google Scholar 

  • Mariani, M. S., Ren, Z.-M., Bascompte, J. & Tessone, C. J. Nestedness in complex networks: Observation, emergence, and implications. Phys. Rep. 813, 1–90 (2019).

    Article 
    ADS 
    MathSciNet 

    Google Scholar 

  • Almeida-Neto, M., Guimaraes, P., Guimaraes, P. R. Jr., Loyola, R. D. & Ulrich, W. A consistent metric for nestedness analysis in ecological systems: Reconciling concept and measurement. Oikos 117, 1227–1239 (2008).

    Article 

    Google Scholar 

  • Flores, C. O., Valverde, S. & Weitz, J. S. Multi-scale structure and geographic drivers of cross-infection within marine bacteria and phages. ISME J. 7, 520–532 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Sanders, W. B. & Masumoto, H. Lichen algae: The photosynthetic partners in lichen symbioses. Lichenologist 53, 347–393 (2021).

    Article 

    Google Scholar 

  • Duran-Nebreda, S. & Bassel, G. W. Bridging scales in plant biology using network science. Trends Plant Sci. 22, 1001–1003 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Galiana, N. et al. Ecological network complexity scales with area. Nature Ecol. Evol. 2022, 1–8 (2022).

    Google Scholar 

  • Solé, R. V. & Valverde, S. Spontaneous emergence of modularity in cellular networks. J. R. Soc. Interface 5, 129–133 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Jackson, M. D., Duran-Nebreda, S. & Bassel, G. W. Network-based approaches to quantify multicellular development. J. R. Soc. Interface 14, 20170484 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jackson, M. D., Xu, H., Duran-Nebreda, S., Stamm, P. & Bassel, G. W. Topological analysis of multicellular complexity in the plant hypocotyl. Elife 6, e26023 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jackson, M. D. et al. Global topological order emerges through local mechanical control of cell divisions in the arabidopsis shoot apical meristem. Cell Syst. 8, 53–65 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Miadlikowska, J. et al. A multigene phylogenetic synthesis for the class lecanoromycetes (ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families. Mol. Phylogenet. Evol. 79, 132–168 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Perez-Lamarque, B., Selosse, M.-A., Öpik, M., Morlon, H. & Martos, F. Cheating in arbuscular mycorrhizal mutualism: A network and phylogenetic analysis of mycoheterotrophy. New Phytol. 226, 1822–1835 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Jaccard, P. Étude comparative de la distribution florale dans une portion des alpes et des jura. Bull. Soc. Vaudoise Sci. Naturelles 37, 547–579 (1901).

    Google Scholar 

  • Müllner, D. fastcluster: Fast hierarchical, agglomerative clustering routines for r and python. J. Stat. Softw. 53, 1–18 (2013).

    Article 

    Google Scholar 

  • Sole, R. V. & Montoya, M. Complexity and fragility in ecological networks. Proc. R. Soc. Lond. Ser. B Biol. Sci. 268, 2039–2045 (2001).

    Article 
    CAS 

    Google Scholar 

  • Guimaraes, P. R. Jr. The structure of ecological networks across levels of organization. Annu. Rev. Ecol. Evol. Syst. 51, 433–460 (2020).

    Article 

    Google Scholar 

  • Nash, T. H. Lichen Biology (Cambridge University Press, 1996).

    Google Scholar 

  • Hawksworth, D. The variety of fungal-algal symbioses, their evolutionary significance, and the nature of lichens. Bot. J. Linn. Soc. 96, 3–20 (1988).

    Article 

    Google Scholar 

  • Richardson, D. H. War in the world of lichens: Parasitism and symbiosis as exemplified by lichens and lichenicolous fungi. Mycol. Res. 103, 641–650 (1999).

    Article 
    ADS 

    Google Scholar 

  • Lücking, R. et al. Do lichens domesticate photobionts like farmers domesticate crops? Evidence from a previously unrecognized lineage of filamentous cyanobacteria. Am. J. Bot. 96, 1409–1418 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Kaasalainen, U., Schmidt, A. R. & Rikkinen, J. Diversity and ecological adaptations in palaeogene lichens. Nature Plants 3, 1–8 (2017).

    Article 

    Google Scholar 

  • Piercey-Normore, M. D. The lichen-forming ascomycete evernia mesomorpha associates with multiple genotypes of Trebouxia jamesii. New Phytol. 169, 331–344 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rudgers, J. A. & Strauss, S. Y. A selection mosaic in the facultative mutualism between ants and wild cotton. Proc. R. Soc. Lond. Ser. B Biol. Sci. 271, 2481–2488 (2004).

    Article 

    Google Scholar 

  • Spribille, T., Resl, P., Stanton, D. E. & Tagirdzhanova, G. Evolutionary biology of lichen symbioses. New Phytol. 2022, 25 (2022).

    Google Scholar 

  • Thébault, E. & Fontaine, C. Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329, 853–856 (2010).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Stouffer, D. B. & Bascompte, J. Compartmentalization increases food-web persistence. Proc. Natl. Acad. Sci. 108, 3648–3652 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guimaraes, P. R. Jr. et al. Interaction intimacy affects structure and coevolutionary dynamics in mutualistic networks. Curr. Biol. 17, 1797–1803 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Valverde, S. et al. The architecture of mutualistic networks as an evolutionary spandrel. Nature Ecol. Evol. 2, 94–99 (2018).

    Article 

    Google Scholar 

  • Staniczenko, P. P., Kopp, J. C. & Allesina, S. The ghost of nestedness in ecological networks. Nat. Commun. 4, 1–6 (2013).

    Article 

    Google Scholar 

  • Vázquez, D. P., Blüthgen, N., Cagnolo, L. & Chacoff, N. P. Uniting pattern and process in plant-animal mutualistic networks: A review. Ann. Bot. 103, 1445–1457 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mello, M. A. et al. Insights into the assembly rules of a continent-wide multilayer network. Nature Ecol. Evol. 3, 1525–1532 (2019).

    Article 

    Google Scholar 

  • Felix, G. M., Pinheiro, R. B., Jorge, L. R. & Lewinsohn, T. M. A framework for hierarchical compound topologies in species interaction networks. Oikos 2022, 9538 (2022).

    Article 

    Google Scholar 

  • Valverde, S. et al. Coexistence of nestedness and modularity in host-pathogen infection networks. Nature Ecol. Evol. 4, 568–577 (2020).

    Article 

    Google Scholar 

  • Hui, C. & Richardson, D. M. How to invade an ecological network. Trends Ecol. Evol. 34, 121–131 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Layman, C. A., Quattrochi, J. P., Peyer, C. M. & Allgeier, J. E. Niche width collapse in a resilient top predator following ecosystem fragmentation. Ecol. Lett. 10, 937–944 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vidiella, B., Fontich, E., Valverde, S. & Sardanyés, J. Habitat loss causes long extinction transients in small trophic chains. Thyroid Res. 14, 641–661 (2021).

    Google Scholar 

  • Donohue, I. et al. Navigating the complexity of ecological stability. Ecol. Lett. 19, 1172–1185 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Krause, A. E., Frank, K. A., Mason, D. M., Ulanowicz, R. E. & Taylor, W. W. Compartments revealed in food-web structure. Nature 426, 282–285 (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Hagberg, A., Swart, P. & S Chult, D. Exploring network structure, dynamics, and function using networkx. In Tech. Rep., Los Alamos National Lab.(LANL), Los Alamos (2008).

  • Chimani, M. et al. The open graph drawing framework (ogdf). Handb. Graph Draw. Visual. 2011, 543–569 (2013).

    Google Scholar 

  • Hachul, S. & Jünger, M. Drawing large graphs with a potential-field-based multilevel algorithm. In Graph Drawing: 12th International Symposium, GD 2004, New York, NY, USA, September 29-October 2, 2004, Revised Selected Papers 12, 285–295 (Springer, 2005).

  • Raghavan, U. N., Albert, R. & Kumara, S. Near linear time algorithm to detect community structures in large-scale networks. Phys. Rev. E 76, 036106 (2007).

    Article 
    ADS 

    Google Scholar 

  • Newman, M. E. & Girvan, M. Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Barber, M. J. Modularity and community detection in bipartite networks. Phys. Rev. E 76, 066102 (2007).

    Article 
    ADS 
    MathSciNet 

    Google Scholar 

  • Pesántez-Cabrera, P. & Kalyanaraman, A. Efficient detection of communities in biological bipartite networks. IEEE/ACM Trans. Comput. Biol. Bioinf. 16, 258–271 (2017).

    Article 

    Google Scholar 

  • Almeida-Neto, M. & Ulrich, W. A straightforward computational approach for measuring nestedness using quantitative matrices. Environ. Model. Softw. 26, 173–178 (2011).

    Article 

    Google Scholar 

  • Latora, V. & Marchiori, M. Efficient behavior of small-world networks. Phys. Rev. Lett. 87, 198701 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Borgatti, S. P. & Halgin, D. S. Analyzing affiliation networks. Sage Handb. Soc. Netw. Anal. 1, 417–433 (2011).

    Google Scholar 

  • Roopnarine, P. D. Extinction cascades and catastrophe in ancient food webs. Paleobiology 32, 1–19 (2006).

    Article 

    Google Scholar 

  • Pires, M. M. et al. The indirect paths to cascading effects of extinctions in mutualistic networks. Ecology 101(7), e03080 https://doi.org/10.1002/ecy.3080 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Mestres, J., Gregori-Puigjane, E., Valverde, S. & Sole, R. V. Data completeness-the achilles heel of drug-target networks. Nat. Biotechnol. 26, 983–984 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Milo, R. et al. Network motifs: Simple building blocks of complex networks. Science 298, 824–827 (2002).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Sarzynska, M., Leicht, E. A., Chowell, G. & Porter, M. A. Null models for community detection in spatially embedded, temporal networks. J. Complex Netw. 4, 363–406 (2016).

    Article 
    MathSciNet 

    Google Scholar 


  • Source: Ecology - nature.com

    Two wild carnivores selectively forage for prey but not amino acids

    Development of an array of molecular tools for the identification of khapra beetle (Trogoderma granarium), a destructive beetle of stored food products