in

Strong effects of food quality on host life history do not scale to impact parasitoid efficacy or life history

[adace-ad id="91168"]
  • Wajnberg, É. et al. (eds) Behavioral Ecology of Insect Parasitoids: From Theoretical Approaches to Field Applications 1st edn. (Blackwell Publishing Ltd, 2008).

    Google Scholar 

  • Godfray, H. C. J. Parasitoids: Behavioral and Evolutionary Ecology (Princeton University Press, 1994).

    Book 

    Google Scholar 

  • Morris, R. J., Lewis, O. T. & Godfray, H. C. J. Apparent competition and insect community structure: Towards a spatial perspective. Annales Zoologica Fennici 42, 1–14 (2005).

    Google Scholar 

  • Forbes, A. A., Bagley, R. K., Beer, M. A., Hippee, A. C. & Widmayer, H. A. Quantifying the unquantifiable: Why Hymenoptera, not Coleoptera, is the most speciose animal order. BMC Ecol. 18, 1–11 (2018).

    Article 

    Google Scholar 

  • Hassell, M. P. & Waage, J. K. Host–parasitoid population interactions. Annu. Rev. Entomol. 29, 89–114 (1984).

    Article 

    Google Scholar 

  • Lafferty, K. D. et al. Parasites in food webs: The ultimate missing links. Ecol. Lett. 11, 533–546 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Van Veen, F. J. F., Van Holland, P. D. & Godfray, H. C. J. Stable coexistence in insect communities due to density- and trait-mediated indirect effects. Ecology 86, 3182–3189 (2005).

    Article 

    Google Scholar 

  • Schmidt, M. H. et al. Relative importance of predators and parasitoids for cereal aphid control. Proc. R. Soc. Lond. Series B Biol. Sci. 270, 1905–1909 (2003).

    Article 

    Google Scholar 

  • Mills, N. J. & Wajnberg, É. Optimal foraging behavior and efficient biological control methods. In Behavioral Ecology of Insect Parasitoids: From Theoretical Approaches to Field Applications 1st edn (eds Wajnberg, É. et al.) 1–30 (Blackwell Publishing, 2008).

    Google Scholar 

  • Vinson, S. B. Host suitability for insect parasitoids. Annu. Rev. Entomol. 25, 397–419 (1980).

    Article 

    Google Scholar 

  • Benrey, B. & Denno, R. F. The slow-growth-high-mortality hypothesis: A test using the cabbage butterfly. Ecology 78, 987–999 (1997).

    Google Scholar 

  • Chau, A. & Mackauer, M. Host-instar selection in the aphid parasitoid Monoctonus paulensis (Hymenoptera: Braconidae, Aphidiinae): Assessing costs and benefits. Can. Entomol. 133, 549–564 (2001).

    Article 

    Google Scholar 

  • Strand, M. R. & Obrycki, J. J. Host specificity of insect parasitoids and predators. Bioscience 46, 422–429 (1996).

    Article 

    Google Scholar 

  • Vinson, S. B. Host selection by insect parasitoids. Annu. Rev. Entomol. 21, 109–133 (1976).

    Article 

    Google Scholar 

  • Wang, X. G. & Messing, R. H. Fitness consequences of body-size-dependent host species selection in a generalist ectoparasitoid. Behav. Ecol. Sociobiol. 56, 513–522 (2004).

    Article 

    Google Scholar 

  • Liu, Z., Xu, B., Li, L. & Sun, J. Host-size mediated trade-off in a parasitoid Sclerodermus harmandi. PLoS ONE 6, e23260 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, X. Y., Yang, Z. Q., Wu, H. & Gould, J. R. Effects of host size on the sex ratio, clutch size, and size of adult Spathius agrili, an ectoparasitoid of emerald ash borer. Biol. Control 44, 7–12 (2008).

    Article 

    Google Scholar 

  • Hardy, I. C. W., Griffiths, N. T. & Godfray, H. C. J. Clutch size in a parasitoid wasp: A manipulation experiment. J. Anim. Ecol. 61, 121–129 (1992).

    Article 

    Google Scholar 

  • Scriber, J. M. & Slansky, F. The nutritional ecology of immature insects. Annu. Rev. Entomol. 26, 183–211 (1981).

    Article 

    Google Scholar 

  • Moreau, J., Benrey, B. & Thiery, D. Assessing larval food quality for phytophagous insects: Are the facts as simple as they appear?. Funct. Ecol. 20, 592–600 (2006).

    Article 

    Google Scholar 

  • Davidowitz, G., D’Amico, L. J. & Nijhout, H. F. The effects of environmental variation on a mechanism that controls insect body size. Evolut. Ecol. Res. 6, 49–62 (2004).

    Google Scholar 

  • Williams, I. S. Slow-growth, high-mortality-a general hypothesis, or is it?. Ecol. Entomol. 24, 490–495 (1999).

    Article 

    Google Scholar 

  • Chen, K. & Chen, Y. Slow-growth high-mortality: A meta-analysis for insects. Insect Sci. 25, 337–351 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Waldbauer, G. P. The consumption and utilization of food by insects. Adv. Insect Physiol. 5, 229–288 (1968).

    Article 

    Google Scholar 

  • Hochuli, D. F. Insect herbivory and ontogeny: How do growth and development influence feeding behaviour, morphology and host use?. Austral. Ecol. 26, 563–570 (2001).

    Article 

    Google Scholar 

  • Holmes, L. A., Nelson, W. A. & Lougheed, S. C. Food quality effects on instar-specific life histories of a holometabolous insect. Ecol. Evol. 10, 626–637 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kagata, H. & Ohgushi, T. Bottom-up trophic cascades and material transfer in terrestrial food webs. Ecol. Res. 21, 26–34 (2006).

    Article 

    Google Scholar 

  • Scherber, C. et al. Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature 468, 553–556 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Vidal, M. C. & Murphy, S. M. Bottom-up vs top-down effects on terrestrial insect herbivores: A meta-analysis. Ecol. Lett. 21, 138–150 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Harvey, J. A. Factors affecting the evolution of development strategies in parasitoid wasps: The importance of functional constraints and incorporating complexity. Entomol. Exp. Appl. 117, 1–13 (2005).

    Article 

    Google Scholar 

  • Charnov, E. L., Los-den Hartogh, R. L., Jones, W. T. & van den Assem, J. Sex ratio evolution in a variable environment. Nature 289, 27–33 (1981).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Larson, A. O. The bean weevil and the southern Cowpea weevil in California. United States Department of Agriculture. Technical Bulletin No. 593, Washington, D. C. (1938).

  • Askew, R. R. & Shaw, M. R. Parasitoid communities: their size, structure and development in Insect Parasitoids: 13th Symposium of Royal Entomological Society of London (eds. Waage, J.K. & Greathead, D.J. 225–264 (1986).

  • Holmes, L. A., Nelson, W. A., Dyck, M. & Lougheed, S. C. Enhancing the usefulness of artificial seeds in seed beetle model systems research. Methods Ecol. Evol. 11, 1701–1706 (2020).

    Article 

    Google Scholar 

  • Ellers, J., Van Alphen, J. J. M. & Sevenster, J. G. A field study of size-fitness relationships in the parasitoid Asobara tabida. J. Anim. Ecol. 67, 318–324 (1998).

    Article 

    Google Scholar 

  • Wood, S. N. Stable and efficient multiple smoothing parameter estimation for generalized additive models. J. Am. Stat. 99, 673–686 (2004).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Wood, S. N. Generalized Additive Models: An Introduction with R 2nd edn. (Chapman and Hall/CRC, 2017).

    Book 
    MATH 

    Google Scholar 

  • Wood, S. N. Thin-plate regression splines. J. Roy. Stat. Soc. B 65, 95–114 (2003).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2020). Accessed 3 April 2020.

  • Burnham, K. P. & Anderson, D. R. Model Selection and Inference: A Practical Information-Theoretical Approach 2nd edn. (Springer-Verlag, 2002).

    MATH 

    Google Scholar 

  • Wood, S. N., Pya, N. & Saefken, B. Smoothing parameter and model selection for general smooth models (with discussion). J. Am. Stat. Assoc. 111, 1548–1575 (2016).

    Article 
    CAS 

    Google Scholar 

  • Bolker, B., & R Development Core Team Tools for general maximum likelihood estimation. Version 1.0.20. (2017). Accessed 4 April 2020.

  • Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biometical. J. 50, 346–363 (2008).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Rose, N. L., Yang, H., Turner, S. D. & Simpson, G. L. An assessment of the mechanisms for the transfer of lead and mercury from atmospherically contaminated organic soils to lake sediments with particular reference to Scotland, UK. Geochim. Cosmochim. Acta 82, 113–135 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Holmes, L. A., Nelson, W. A. & Lougheed, S. C. Data from: Food quality effects on instar-specific life histories of a holometabolous insect. Dryad Digital Repository. https://doi.org/10.5061/dryad.d7wm37px7 (2020).

  • Therneau, T. A Package for Survival Analysis in R. R package version 3.2-13. https://CRAN.R-project.org/package=survival. (2021). Accessed 3 April 2020.

  • Efron, B. The Jackknife, the Bootstrap, and Other Resampling Plans (Society for Industrial and Applied Mathematics, 1982).

    Book 
    MATH 

    Google Scholar 

  • Awmack, C. S. & Leather, S. R. Host plant quality and fecundity in herbivorous insects. Annu. Rev. Entomol. 47, 817–844 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Clancy, K. M. & Price, P. W. Rapid herbivore growth enhances enemy attack: Sublethal plant defenses remain a paradox. Ecology 68, 733–737 (1987).

    Article 

    Google Scholar 

  • Loader, C. & Damman, H. Nitrogen content of food plants and vulnerability of Pieris rapae to natural enemies. Ecology 72, 1586–1590 (1991).

    Article 

    Google Scholar 

  • Uesugi, A. The slow-growth high-mortality hypothesis: Direct experimental support in a leafmining fly. Ecol. Entomol. 40, 221–228 (2015).

    Article 

    Google Scholar 

  • Feeny, P. Plant apparency and chemical defense. in Biochemical Interaction Between Plants and Insects. 1–40 (Springer, 1976).

  • Teder, T. & Tammaru, T. Cascading effects of variation in plant vigor on the relative performance of insect herbivores and their parasitoids. Ecol. Entomol. 27, 94–104 (2002).

    Article 

    Google Scholar 

  • Kagata, H., Nakamura, M. & Ohgushi, T. Bottom-up cascade in a tri-trophic system: Different impacts of host-plant regeneration on performance of a willow leaf beetle and its natural enemy. Ecol. Entomol. 30, 58–62 (2005).

    Article 

    Google Scholar 

  • Vet, L. E. M., Lewis, W. J. & Cardé, R. T. Parasitoid foraging and learning. In Chemical Ecology of Insects 2 (eds Cardé, R. T. & Bell, W. J.) 65–101 (Springer, 1995).

    Chapter 

    Google Scholar 

  • Ishii, Y. & Shimada, M. Learning predator promotes coexistence of prey species in host-parasitoid systems. Proc. Natl. Acad. Sci. 109, 5116–5120 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ode, P. J. & Hardy, I. C. Parasitoid sex ratios and biological control. Behavioral ecology of insect parasitoids. In Behavioral Ecology of Insect Parasitoids: From Theoretical Approaches to field applications (eds Wajnberg, E. et al.) 253–291 (Wiley, 2008).

    Chapter 

    Google Scholar 

  • Xiaoyi, W. & Zhongqi, Y. Behavioral mechanisms of parasitic wasps for searching concealed insect hosts. Acta Ecol. Sin. 28, 1257–1269 (2008).

    Article 

    Google Scholar 

  • Otten, H., Wäckers, F., Battini, M. & Dorn, S. Efficiency of vibrational sounding in the parasitoid Pimpla turionellae is affected by female size. Anim. Behav. 61, 671–677 (2001).

    Article 

    Google Scholar 

  • Kaplan, I., Carrillo, J., Garvey, M. & Ode, P. J. Indirect plant-parasitoid interactions mediated by changes in herbivore physiology. Curr. Opin. Insect Sci. 14, 112–119 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Ode, P. J. Plant toxins and parasitoid trophic ecology. Curr. Opin. Insect Sci. 32, 118–123 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Barbosa, P., Gross, P. & Kemper, J. Influence of plant allelochemicals on the tobacco hornworm and its parasitoid, Cotesia congregate. Ecology 72, 1567–1575 (1991).

    Article 
    CAS 

    Google Scholar 

  • Barbosa, P. Natural enemies and herbivore–plant interactions: Influence of plant allelochemicals and host specificity. In Novel Aspects of Insect–Plant Interactions (eds Barbosa, P. & Letourneau, L. D. K.) 201–230 (Wiley, 1988).

    Google Scholar 

  • Ode, P. J. Plant chemistry and natural enemy fitness: Effects on herbivore and natural enemy interactions. Annu. Rev. Entomol. 51, 163–185 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    Coastal algal blooms have intensified over the past 20 years

    Integrating humans with AI in structural design