Dai, A. & Zhao, T. Uncertainties in historical changes and future projections of drought. Part I: estimates of historical drought changes. Climatic Change 144, 519–533 (2017).
Google Scholar
Greve, P. et al. Global assessment of trends in wetting and drying over land. Nat. Geosci. 7, 716–721 (2014).
Google Scholar
Jiang, J. et al. Tracking moisture sources of precipitation over central Asia: a study based on the water-source-tagging method. J. Clim. 33, 10339–10355 (2020).
Google Scholar
Seneviratne, S. I. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).
Li, Z., Chen, Y., Fang, G. & Li, Y. Multivariate assessment and attribution of droughts in Central Asia. Sci. Rep. 7, 1316 (2017).
Google Scholar
Li, Z., Chen, Y., Li, W., Deng, H. & Fang, G. Potential impacts of climate change on vegetation dynamics in Central Asia. J. Geophys. Res. Atmos. 120, 12345–12356 (2015).
Google Scholar
Deng, H. & Chen, Y. Influences of recent climate change and human activities on water storage variations in Central Asia. J. Hydrol. 544, 46–57 (2017).
Google Scholar
Seager, R., Nakamura, J. & Ting, M. Mechanisms of seasonal soil moisture drought onset and termination in the southern Great Plains. J. Hydrometeorol. 20, 751–771 (2019).
Google Scholar
Teuling, A. J. et al. Evapotranspiration amplifies European summer drought. Geophys. Res. Lett. 40, 2071–2075 (2013).
Google Scholar
Douville, H. et al. in Climate Change 2021: The Physical Science Basis (eds. Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).
Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Change 3, 52–58 (2013).
Google Scholar
Barlow, M. & Hoell, A. Drought in the Middle East and Central–Southwest Asia during winter 2013/14. Bull. Am. Meteorol. Soc. 96, S71–S76 (2015).
Google Scholar
Peng, D., Zhou, T., Zhang, L. & Zou, L. Detecting human influence on the temperature changes in Central Asia. Clim. Dyn. 53, 4553–4568 (2019).
Google Scholar
Barlow, M. et al. A review of drought in the Middle East and Southwest Asia. J. Clim. 29, 8547–8574 (2016).
Google Scholar
Hoell, A., Funk, C. & Barlow, M. The forcing of Southwestern Asia teleconnections by low-frequency sea surface temperature variability during boreal winter. J. Clim. 28, 1511–1526 (2015).
Google Scholar
Jiang, J. & Zhou, T. Human‐induced rainfall reduction in drought‐prone northern central Asia. Geophys. Res. Lett. 48, e2020GL092156 (2021).
Google Scholar
Williams, A. P. et al. Contribution of anthropogenic warming to California drought during 2012–2014. Geophys. Res. Lett. 42, 6819–6828 (2015).
Google Scholar
Williams, A. P. et al. Large contribution from anthropogenic warming to an emerging North American megadrought. Science 368, 314–318 (2020).
Google Scholar
Samaniego, L. et al. Anthropogenic warming exacerbates European soil moisture droughts. Nat. Clim. Change 8, 421–426 (2018).
Google Scholar
García-Herrera, R. et al. The European 2016/17 drought. J. Clim. 32, 3169–3187 (2019).
Google Scholar
Mueller, B. & Zhang, X. Causes of drying trends in northern hemispheric land areas in reconstructed soil moisture data. Clim. Change 134, 255–267 (2016).
Google Scholar
Gu, X. et al. Attribution of global soil moisture drying to human activities: a quantitative viewpoint. Geophys. Res. Lett. 46, 2573–2582 (2019).
Google Scholar
Coats, S. et al. Internal ocean–atmosphere variability drives megadroughts in western North America. Geophys. Res. Lett. 43, 9886–9894 (2016).
Google Scholar
Deser, C. et al. Insights from Earth system model initial-condition large ensembles and future prospects. Nat. Clim. Change 10, 277–286 (2020).
Google Scholar
Hawkins, E. & Sutton, R. The potential to narrow uncertainty in regional climate predictions. Bull. Am. Meteorol. Soc. 90, 1095–1108 (2009).
Google Scholar
Deser, C., Knutti, R., Solomon, S. & Phillips, A. S. Communication of the role of natural variability in future North American climate. Nat. Clim. Change 2, 775–779 (2012).
Google Scholar
Murphy, J. M. et al. Transient climate changes in a perturbed parameter ensemble of emissions-driven Earth system model simulations. Clim. Dyn. 43, 2855–2885 (2014).
Google Scholar
Huang, X. et al. The recent decline and recovery of Indian summer monsoon rainfall: relative roles of external forcing and internal variability. J. Clim. 33, 5035–5060 (2020).
Google Scholar
Zhang, Y., Wallace, J. M. & Battisti, D. S. ENSO-like interdecadal variability: 1900–93. J. Clim. 10, 1004–1020 (1997).
Google Scholar
Power, S., Casey, T., Folland, C., Colman, A. & Mehta, V. Inter-decadal modulation of the impact of ENSO on Australia. Clim. Dyn. 15, 319–324 (1999).
Google Scholar
Henley, B. J. et al. A tripole index for the Interdecadal Pacific Oscillation. Clim. Dyn. 45, 3077–3090 (2015).
Google Scholar
Wu, L., Ma, X., Dou, X., Zhu, J. & Zhao, C. Impacts of climate change on vegetation phenology and net primary productivity in arid Central Asia. Sci. Total Environ. 796, 149055 (2021).
Google Scholar
FAO. Drought Characteristics and Management in Central Asia and Turkey (FAO Water Reports, 2017).
Cai, W., Cowan, T., Briggs, P. & Raupach, M. Rising temperature depletes soil moisture and exacerbates severe drought conditions across southeast Australia. Geophys. Res. Lett. 36, L21709 (2009).
Google Scholar
Kidron, G. J. & Kronenfeld, R. Temperature rise severely affects pan and soil evaporation in the Negev Desert. Ecohydrology 9, 1130–1138 (2016).
Google Scholar
Xu, Y., Zhang, X., Hao, Z., Singh, V. P. & Hao, F. Characterization of agricultural drought propagation over China based on bivariate probabilistic quantification. J. Hydrol. 598, 126194 (2021).
Google Scholar
Bae, H. et al. Characteristics of drought propagation in South Korea: relationship between meteorological, agricultural, and hydrological droughts. Nat. Hazards 99, 1–16 (2019).
Google Scholar
Wang, W., Ertsen, M. W., Svoboda, M. D. & Hafeez, M. Propagation of drought: from meteorological drought to agricultural and hydrological drought. Adv. Meteorol. 2016, 127897 (2016).
Google Scholar
Hoell, A., Funk, C., Barlow, M. & Cannon, F. in Climate Extremes: Patterns and Mechanisms (eds Wang, S. et al.) 283–298 (American Geophysical Union, 2017).
Wu, M. et al. A very likely weakening of Pacific Walker Circulation in constrained near-future projections. Nat. Commun. 12, 6502 (2021).
Google Scholar
Hoell, A., Barlow, M., Cannon, F. & Xu, T. Oceanic origins of historical southwest Asia precipitation during the boreal cold season. J. Clim. 30, 2885–2903 (2017).
Google Scholar
Jiang, J., Zhou, T., Chen, X. & Wu, B. Central Asian precipitation shaped by the tropical Pacific decadal variability and the Atlantic multidecadal variability. J. Clim. 34, 7541–7553 (2021).
Google Scholar
Barlow, M. A. & Tippett, M. K. Variability and predictability of Central Asia river flows: antecedent winter precipitation and large-scale teleconnections. J. Hydrometeorol. 9, 1334–1349 (2008).
Google Scholar
Hoell, A., Barlow, M. & Saini, R. Intraseasonal and seasonal-to-interannual Indian Ocean convection and hemispheric teleconnections. J. Clim. 26, 8850–8867 (2013).
Google Scholar
Rana, S., McGregor, J. & Renwick, J. Dominant modes of winter precipitation variability over Central Southwest Asia and inter-decadal change in the ENSO teleconnection. Clim. Dyn. https://doi.org/10.1007/s00382-019-04889-9 (2019).
Google Scholar
Jiang, J., Zhou, T., Chen, X. & Zhang, L. Future changes in precipitation over Central Asia based on CMIP6 projections. Environ. Res. Lett. 15, 054009 (2020).
Google Scholar
Huang, X. et al. South Asian summer monsoon projections constrained by the interdecadal Pacific oscillation. Sci. Adv. 6, eaay6546 (2020).
Google Scholar
Varis, O. Resources: curb vast water use in Central Asia. Nature 514, 27–29 (2014).
Google Scholar
Farah, P. in ENERGY: POLICY, LEGAL AND SOCIAL-ECONOMIC ISSUES UNDER THE DIMENSIONS OF SUSTAINABILITY AND SECURITY (eds Farah, P. & Rossi, P.) 179–193 (Imperial College Press & World Scientific Publishing, 2015).
Wang, X., Chen, Y., Li, Z., Fang, G. & Wang, Y. Development and utilization of water resources and assessment of water security in Central Asia. Agric. Water Manag. 240, 106297 (2020).
Google Scholar
Peng, D., Zhou, T., Zhang, L., Zhang, W. & Chen, X. Observationally constrained projection of the reduced intensification of extreme climate events in Central Asia from 0.5 °C less global warming. Clim. Dyn. 54, 543–560 (2020).
Google Scholar
Pokhrel, Y. et al. Global terrestrial water storage and drought severity under climate change. Nat. Clim. Change 11, 226–233 (2021).
Google Scholar
Zhao, T. & Dai, A. CMIP6 model-projected hydroclimatic and drought changes and their causes in the 21st century. J. Clim. https://doi.org/10.1175/JCLI-D-21-0442.1 (2021).
Balsamo, G. et al. ERA-Interim/Land: a global land surface reanalysis data set. Hydrol. Earth Syst. Sci. 19, 389–407 (2015).
Google Scholar
Rodell, M. et al. The Global Land Data Assimilation System. Bull. Am. Meteorol. Soc. 85, 381–394 (2004).
Google Scholar
Martens, B. et al. GLEAM v3: satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev. 10, 1903–1925 (2017).
Google Scholar
Preimesberger, W., Scanlon, T., Su, C.-H., Gruber, A. & Dorigo, W. Homogenization of structural breaks in the global ESA CCI soil moisture multisatellite climate data record. IEEE Trans. Geosci. Remote Sens. 59, 2845–2862 (2021).
Google Scholar
Dunn, R. J. H. et al. Development of an updated global land in situ‐based data set of temperature and precipitation extremes: HadEX3. J. Geophys. Res. Atmos. 125, e2019JD032263 (2020).
Google Scholar
Rohde, R., Muller, R., Jacobsen, R., Perlmutter, S. & Mosher, S. Berkeley Earth temperature averaging process. Geoinf. Geostat. 1, 2 (2013).
Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).
Google Scholar
Deser, C., Simpson, I. R., McKinnon, K. A. & Phillips, A. S. The Northern Hemisphere extratropical atmospheric circulation response to ENSO: how well do we know it and how do we evaluate models accordingly? J. Clim. 30, 5059–5082 (2017).
Google Scholar
Deser, C., Guo, R. & Lehner, F. The relative contributions of tropical Pacific sea surface temperatures and atmospheric internal variability to the recent global warming hiatus. Geophys. Res. Lett. 44, 7945–7954 (2017).
Google Scholar
Henley, B. J. Pacific decadal climate variability: indices, patterns and tropical–extratropical interactions. Glob. Planet. Change 155, 42–55 (2017).
Google Scholar
Kaplan, A. et al. Analyses of global sea surface temperature 1856–1991. J. Geophys. Res. Ocean. 103, 18567–18589 (1998).
Google Scholar
Huang, B. et al. Extended reconstructed sea surface temperature, Version 5 (ERSSTv5): upgrades, validations, and intercomparisons. J. Clim. 30, 8179–8205 (2017).
Google Scholar
Salzmann, M. & Cherian, R. On the enhancement of the Indian summer monsoon drying by Pacific multidecadal variability during the latter half of the twentieth century. J. Geophys. Res. Atmos. 120, 9103–9118 (2015).
Google Scholar
Ohlson, J. A. & Kim, S. Linear valuation without OLS: the Theil–Sen estimation approach. SSRN Electron. J. https://doi.org/10.2139/ssrn.2276927 (2013).
Google Scholar
Mann, H. B. Nonparametric tests against trend. Econometrica 13, 245–259 (1945).
Google Scholar
Kendall, M. G. Rank Correlation Methods (Hafner Publishing Company, 1955).
Source: Resources - nature.com