in

Energy production and water savings from floating solar photovoltaics on global reservoirs

[adace-ad id="91168"]
  • Mora, C. et al. Broad threat to humanity from cumulative climate hazards intensified by greenhouse gas emissions. Nat. Clim. Change 8, 1062–1071 (2018).

    Article 
    CAS 

    Google Scholar 

  • Sahu, A., Yadav, N. & Sudhakar, K. Floating photovoltaic power plant: a review. Renew. Sustain. Energy Rev. 66, 815–824 (2016).

    Article 

    Google Scholar 

  • Hernandez, R. R. et al. Environmental impacts of utility-scale solar energy. Renew. Sustain. Energy Rev. 29, 766–779 (2014).

    Article 

    Google Scholar 

  • van de Ven, D.-J. et al. The potential land requirements and related land use change emissions of solar energy. Sci. Rep. 11, 2907 (2021).

    Article 

    Google Scholar 

  • Rauf, H., Gull, M. S. & Arshad, N. Integrating floating solar PV with hydroelectric power plant: analysis of Ghazi Barotha reservoir in Pakistan. Energy Procedia 158, 816–821 (2019).

    Article 

    Google Scholar 

  • Solomin, E., Sirotkin, E., Cuce, E., Selvanathan, S. P. & Kumarasamy, S. Hybrid floating solar plant designs: a review. Energies 14, 2751 (2021).

    Article 
    CAS 

    Google Scholar 

  • Bontempo Scavo, F., Tina, G. M., Gagliano, A. & Nižetić, S. An assessment study of evaporation rate models on a water basin with floating photovoltaic plants. Int. J. Energy Res. 45, 167–188 (2021).

    Article 

    Google Scholar 

  • Where Sun Meets Water: Floating Solar Handbook for Practitioners (World Bank Group, ESMAP, SERIS, 2019).

  • Global Floating Solar Panels Industry (ReportLinker, 2022).

  • Almeida, R. M. et al. Floating solar power could help fight climate change—let’s get it right. Nature 606, 246–249 (2022).

    Article 
    CAS 

    Google Scholar 

  • Gonzalez Sanchez, R., Kougias, I., Moner-Girona, M., Fahl, F. & Jäger-Waldau, A. Assessment of floating solar photovoltaics potential in existing hydropower reservoirs in Africa. Renew. Energy 169, 687–699 (2021).

    Article 

    Google Scholar 

  • Mahmood, S., Deilami, S. & Taghizadeh, S. Floating solar PV and hydropower in Australia: feasibility, future investigations and challenges. In 2021 31st Australasian Universities Power Engineering Conference (AUPEC) (eds. Rajakaruna, S., Siada, A. A., et al.) 1–5 (IEEE, 2021).

  • Rahman, M. W., Mahmud, M. S., Ahmed, R., Rahman, M. S. & Arif, M. Z. Solar lanes and floating solar PV: new possibilities for source of energy generation in Bangladesh. In 2017 Innovations in Power and Advanced Computing Technologies (i-PACT) 1–6 (IEEE, 2017).

  • Padilha Campos Lopes, M., de Andrade Neto, S., Alves Castelo Branco, D., Vasconcelos de Freitas, M. A. & da Silva Fidelis, N. Water–energy nexus: floating photovoltaic systems promoting water security and energy generation in the semiarid region of Brazil. J. Clean. Prod. 273, 122010 (2020).

    Article 

    Google Scholar 

  • Fereshtehpour, M., Javidi Sabbaghian, R., Farrokhi, A., Jovein, E. B. & Ebrahimi Sarindizaj, E. Evaluation of factors governing the use of floating solar system: a study on Iran’s important water infrastructures. Renew. Energy 171, 1171–1187 (2021).

    Article 

    Google Scholar 

  • Nagananthini, R. & Nagavinothini, R. Investigation on floating photovoltaic covering system in rural Indian reservoir to minimize evaporation loss. Int. J. Sustain. Energy 40, 781–805 (2021).

    Article 

    Google Scholar 

  • Sukarso, A. P. & Kim, K. N. Cooling effect on the floating solar PV: performance and economic analysis on the case of West Java province in Indonesia. Energies 13, 2126 (2020).

    Article 
    CAS 

    Google Scholar 

  • Jamalludin, M. A. S. et al. Potential of floating solar technology in Malaysia. Int. J. Power Electron. Drive Syst. 10, 1638–1644 (2019).

    Google Scholar 

  • Dellosa, J. & Palconit, E. V. Resource assessment of a floating solar photovoltaic (FSPV) system with artificial intelligence applications in Lake Mainit, Philippines. Eng. Technol. Appl. Sci. Res. 12, 8410–8415 (2022).

    Article 

    Google Scholar 

  • Sapthanakorn, P. & Salakij, S. Evaluating the potential of using floating solar photovoltaic on 12 reservoirs of Electricity Generation Authority of Thailand hydropower plants. In 2021 International Conference on Smart City and Green Energy (ICSCGE) 41–45 (IEEE, 2021).

  • Sutton, M. The UK’s Floating Photovoltaic (FPV) Potential (Pagerpower, 2020); https://www.pagerpower.com/news/the-uks-floating-photovoltaic-fpv-potential/

  • Spencer, R. S., Macknick, J., Aznar, A., Warren, A. & Reese, M. O. Floating photovoltaic systems: assessing the technical potential of photovoltaic systems on man-made water bodies in the continental United States. Environ. Sci. Technol. 53, 1680–1689 (2019).

    Article 
    CAS 

    Google Scholar 

  • Lee, N. et al. Hybrid floating solar photovoltaics–hydropower systems: benefits and global assessment of technical potential. Renew. Energy 162, 1415–1427 (2020).

    Article 

    Google Scholar 

  • McKuin, B. et al. Energy and water co-benefits from covering canals with solar panels. Nat. Sustain. 4, 609–617 (2021).

    Article 

    Google Scholar 

  • Liber, W. et al. Statewide Potential Study for the Implementation of Floating Solar Photovoltaic Arrays (Colorado Energy Office, 2020).

  • Andrews, R. W., Stein, J. S., Hansen, C. & Riley, D. Introduction to the open source PV LIB for python photovoltaic system modelling package. In 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC) 0170–0174 (IEEE, 2014).

  • Ranjbaran, P., Yousefi, H., Gharehpetian, G. B. & Astaraei, F. R. A review on floating photovoltaic (FPV) power generation units. Renew. Sustain. Energy Rev. 110, 332–347 (2019).

    Article 

    Google Scholar 

  • Liu, B. et al. Optimal power peak shaving using hydropower to complement wind and solar power uncertainty. Energy Convers. Manag. 209, 112628 (2020).

    Article 

    Google Scholar 

  • Thorpe, D. How Cities Can Generate Their Own Clean Energy and Create Jobs and Income (Smartcities Dive, 2017); https://www.smartcitiesdive.com/ex/sustainablecitiescollective/how-cities-can-generate-their-own-energy-and-create-jobs-and-income/288521/

  • Mothilal Bhagavathy, S. & Pillai, G. PV microgrid design for rural electrification. Designs 2, 33 (2018).

    Article 

    Google Scholar 

  • Das, K. & Jain, P. Floatovoltaic microgrids: new possibilities of decentralizing water–energy sector in India. Eng. Technol. 8, 9 (2020).

    Google Scholar 

  • Gleick, P. H. Water use. Annu. Rev. Environ. Resour. 28, 275–314 (2003).

    Article 

    Google Scholar 

  • Nkiaka, E., Okpara, U. T. & Okumah, M. Food–energy–water security in sub-Saharan Africa: quantitative and spatial assessments using an indicator-based approach. Environ. Dev. 40, 100655 (2021).

    Article 

    Google Scholar 

  • International Energy Outlook (US Energy Information Administration, 2021).

  • Hydropower (International Energy Agency, 2021).

  • Net Zero by 2050 (International Energy Agency, 2021).

  • Global Energy Transformation: The REmap Transition Pathway (International Renewable Energy Agency, 2019).

  • Gibson, L., Wilman, E. N. & Laurance, W. F. How green is ‘green’ energy? Trends Ecol. Evol. 32, 922–935 (2017).

    Article 

    Google Scholar 

  • Gadzanku, S., Lee, N. & Dyreson, A. Enabling Floating Solar Photovoltaic (FPV) Deployment: Exploring the Operational Benefits of Floating Solar–Hydropower Hybrids (National Renewable Energy Laboratory, 2022).

  • Zhou, Y. et al. An advanced complementary scheme of floating photovoltaic and hydropower generation flourishing water–food–energy nexus synergies. Appl. Energy 275, 115389 (2020).

    Article 

    Google Scholar 

  • Hancook, E. New Floating Solar Study Demonstrates Water Quality Improvements (PV-Tech, 2021); https://www.pv-tech.org/new-floating-solar-study-demonstrates-water-quality-improvements/

  • Château, P.-A. et al. Mathematical modeling suggests high potential for the deployment of floating photovoltaic on fish ponds. Sci. Total Environ. 687, 654–666 (2019).

    Article 

    Google Scholar 

  • Pimentel Da Silva, G. D. & Branco, D. A. C. Is floating photovoltaic better than conventional photovoltaic? Assessing environmental impacts. Impact Assess. Proj. Apprais. 36, 390–400 (2018).

    Article 

    Google Scholar 

  • Floating Solar PV on Dam Reservoirs: The Opportunities and the Challenges (Solar-Hydro, 2021).

  • Guidelines of the Ministry of Water Resources on Strengthening Shoreline Space Control of River and Lake Waters (in Chinese) (Ministry of Water Resources of the People’s Republic of China, 2022); http://finance.people.com.cn/n1/2022/0531/c1004-32434787.html

  • Feron, S., Cordero, R. R., Damiani, A. & Jackson, R. B. Climate change extremes and photovoltaic power output. Nat. Sustain. 4, 270–276 (2020).

    Article 

    Google Scholar 

  • Dutta, R., Chanda, K. & Maity, R. Future of solar energy potential in a changing climate across the world: a CMIP6 multi-model ensemble analysis. Renew. Energy 188, 819–829 (2022).

    Article 

    Google Scholar 

  • Hou, X., Wild, M., Folini, D., Kazadzis, S. & Wohland, J. Climate change impacts on solar power generation and its spatial variability in Europe based on CMIP6. Earth Syst. Dyn. 12, 1099–1113 (2021).

    Article 

    Google Scholar 

  • Lehner, B. et al. High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front. Ecol. Environ. 9, 494–502 (2011).

    Article 

    Google Scholar 

  • Wang, J. et al. GeoDAR: georeferenced global dam and reservoir dataset for bridging attributes and geolocations. Earth Syst. Sci. Data 14, 1869–1899 (2022).

    Article 

    Google Scholar 

  • OpenStreetMap (OpenStreetMap, 2021); www.openstreetmap.org

  • CERES and GEO-Enhanced TOA, Within-Atmosphere and Surface Fluxes, Clouds and Aerosols 1-Hourly Terra-Aqua Edition4A (NASA Langley Atmospheric Science Data Center DAAC, 2017); https://doi.org/10.5067/TERRA+AQUA/CERES/SYN1DEG-1HOUR_L3.004A

  • Muñoz Sabater, J. ERA5-Land Hourly Data from 1981 to Present (Copernicus Climate Change Service Climate Data Store, 2019).

  • Tina, G. M., Bontempo Scavo, F., Merlo, L. & Bizzarri, F. Comparative analysis of monofacial and bifacial photovoltaic modules for floating power plants. Appl. Energy 281, 116084 (2021).

    Article 

    Google Scholar 

  • Whittaker, T., Folley, M. & Hancock, J. in Floating PV Plants (eds. Rosa-Clot, M. and Tina, G. M.) 47–66 (Elsevier, 2020).

  • Micheli, L. Energy and economic assessment of floating photovoltaics in Spanish reservoirs: cost competitiveness and the role of temperature. Sol. Energy 227, 625–634 (2021).

    Article 

    Google Scholar 

  • Mathijssen, D. et al. Potential impact of floating solar panels on water quality in reservoirs; pathogens and leaching. Water Pract. Technol. 15, 807–811 (2020).

    Article 

    Google Scholar 

  • Kim, K. Real options analysis for the investment of floating photovoltaic project in Saemangeum. Korean J. Constr. Eng. Manag. 22, 90–97 (2021).

    Google Scholar 

  • Global Energy Review 2021 (International Energy Agency, 2021).

  • Shiu, A. & Lam, P.-L. Electricity consumption and economic growth in China. Energy Policy 8, 47–54 (2004).

    Article 

    Google Scholar 

  • GADM Database of Global Administrative Areas, Version 2.0 (Global Collaboration Engine, 2012); www.gadm.org

  • LandScan Global 2019 (Oak Ridge National Laboraotry, 2020); https://landscan.ornl.gov/

  • Kummu, M., Taka, M. & Guillaume, J. H. A. Data from: Gridded global datasets for gross domestic product and human development index over 1990–2015. Dryad https://doi.org/10.5061/dryad.dk1j0 (2020).

  • Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).

    Article 

    Google Scholar 

  • Yang, Y., Roderick, M. L., Zhang, S., McVicar, T. R. & Donohue, R. J. Hydrologic implications of vegetation response to elevated CO2 in climate projections. Nat. Clim. Change 9, 44–48 (2019).

    Article 

    Google Scholar 

  • Shuttleworth, W. J. Handbook of Hydrology (ed. Maidment, D. R.) Ch. 4 (McGraw-Hill Education, 1993).

  • Allen, R. G., Pereira, L. S., Raes, D. & Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements FAO Irrigation and Drainage Paper No. 56 (FAO, 1998).

  • Gadzanku, S., Mirletz, H., Lee, N., Daw, J. & Warren, A. Benefits and critical knowledge gaps in determining the role of floating photovoltaics in the energy–water–food nexus. Sustainability 13, 4317 (2021).

    Article 

    Google Scholar 

  • Kumar, M. & Kumar, A. Performance assessment of different photovoltaic technologies for canal-top and reservoir applications in subtropical humid climate. IEEE J. Photovolt. 9, 722–732 (2019).

    Article 

    Google Scholar 

  • Kandananond, K. Forecasting electricity demand in Thailand with an artificial neural network approach. Energies 4, 1246–1257 (2011).

    Article 

    Google Scholar 


  • Source: Resources - nature.com

    Larval rockfish growth and survival in response to anomalous ocean conditions

    When legislation to protect wildlife becomes a problem