in

Polydimethylsiloxane-coated textiles with minimized microplastic pollution

  • Guha Roy, A. Detailing plastic pollution. Nat. Sustain. 2, 654 (2019).

    Article 

    Google Scholar 

  • Lau, W. W. Y. et al. Evaluating scenarios toward zero plastic pollution. Science 369, 1455–1461 (2020).

    Article 
    CAS 

    Google Scholar 

  • Koelmans, A. A. et al. Risk assessment of microplastic particles. Nat. Rev. Mater. 7, 138–152 (2022).

    Article 

    Google Scholar 

  • Rochman, C. M. Microplastics research—from sink to source. Science 360, 28–29 (2018).

    Article 
    CAS 

    Google Scholar 

  • Zhang, Y. et al. Atmospheric microplastics: a review on current status and perspectives. Earth Sci. Rev. 203, 103118 (2020).

    Article 
    CAS 

    Google Scholar 

  • Nowack, B., Cai, Y., Mitrano, D. M. & Hufenus, R. Formation of fiber fragments during abrasion of polyester textiles. Environ. Sci. Technol. 55, 8001–8009 (2021).

    Article 

    Google Scholar 

  • Henry, B., Laitala, K. & Klepp, I. G. Microfibres from apparel and home textiles: prospects for including microplastics in environmental sustainability assessment. Sci. Total Environ. 652, 483–494 (2019).

    Article 

    Google Scholar 

  • Boucher, J. & Friot, D. Primary Microplastics in the Oceans: A Global Evaluation of Sources (IUCN, 2017).

  • Evangeliou, N. et al. Atmospheric transport is a major pathway of microplastics to remote regions. Nat. Commun. 11, 3381 (2020).

    Article 
    CAS 

    Google Scholar 

  • Bergmann, M. et al. White and wonderful? Microplastics prevail in snow from the Alps to the Arctic. Sci. Adv. 5, 1157 (2019).

    Article 

    Google Scholar 

  • Brahney, J., Hallerud, M., Heim, E., Hahnenberger, M. & Sukumaran, S. Plastic rain in protected areas of the United States. Science 368, 1257–1260 (2020).

    Article 
    CAS 

    Google Scholar 

  • Jenner, L. C. et al. Detection of microplastics in human lung tissue using μFTIR spectroscopy. Sci. Total Environ. 831, 154907 (2022).

    Article 
    CAS 

    Google Scholar 

  • Leslie, H. A. et al. Discovery and quantification of plastic particle pollution in human blood. Environ. Int. 163, 107199 (2022).

    Article 
    CAS 

    Google Scholar 

  • Zabala, A. Ocean microfibre contamination. Nat. Sustain. 1, 213 (2018).

    Article 

    Google Scholar 

  • De Falco, F. et al. Evaluation of microplastic release caused by textile washing processes of synthetic fabrics. Environ. Pollut. 236, 916–925 (2018).

    Article 

    Google Scholar 

  • De Falco, F. et al. Novel finishing treatments of polyamide fabrics by electrofluidodynamic process to reduce microplastic release during washings. Polym. Degrad. Stab. 165, 110–116 (2019).

    Article 

    Google Scholar 

  • Suaria, G. et al. Microfibers in oceanic surface waters: a global characterization. Sci. Adv. 6, 8493 (2020).

    Article 

    Google Scholar 

  • Woodward, J., Li, J., Rothwell, J. & Hurley, R. Acute riverine microplastic contamination due to avoidable releases of untreated wastewater. Nat. Sustain. 4, 793–802 (2021).

    Article 

    Google Scholar 

  • De Falco, F. et al. Pectin based finishing to mitigate the impact of microplastics released by polyamide fabrics. Carbohydr. Polym. 198, 175–180 (2018).

    Article 

    Google Scholar 

  • Zhao, X. et al. Macroscopic evidence of the liquidlike nature of nanoscale polydimethylsiloxane brushes. ACS Nano 15, 13559–13567 (2021).

    Article 
    CAS 

    Google Scholar 

  • Shabanian, S., Khatir, B., Nisar, A. & Golovin, K. Rational design of perfluorocarbon-free oleophobic textiles. Nat. Sustain. 3, 1059–1066 (2020).

    Article 

    Google Scholar 

  • Khatir, B., Shabanian, S. & Golovin, K. Design and high-resolution characterization of silicon wafer-like omniphobic liquid layers applicable to any substrate. ACS Appl. Mater. Interfaces 12, 31933–31939 (2020).

    Article 
    CAS 

    Google Scholar 

  • Soltani, M. & Golovin, K. Lossless, passive transportation of low surface tension liquids induced by patterned omniphobic liquidlike polymer brushes. Adv. Funct. Mater. 32, 2107465 (2022).

    Article 
    CAS 

    Google Scholar 

  • Wang, L. & McCarthy, T. J. Covalently attached liquids: instant omniphobic surfaces with unprecedented repellency. Angew. Chem. Int. Ed. 55, 244–248 (2016).

    Article 
    CAS 

    Google Scholar 

  • Liu, J. et al. One-step synthesis of a durable and liquid-repellent poly(dimethylsiloxane) coating. Adv. Mater. 33, 2100237 (2021).

    Article 
    CAS 

    Google Scholar 

  • Özek, H. Z. Silicone-based water repellents. in Waterproof and Water Repellent Textiles and Clothing (ed. Williams, J. T.) 153–189 (Woodhead Publishing, 2018).

  • Cao, C. et al. Robust fluorine-free superhydrophobic PDMS-ormosil@fabrics for highly effective self-cleaning and efficient oil-water separation. J. Mater. Chem. A 4, 12179–12187 (2016).

    Article 
    CAS 

    Google Scholar 

  • Dong, K. et al. Shape adaptable and highly resilient 3D braided triboelectric nanogenerators as e-textiles for power and sensing. Nat. Commun. 11, 2868 (2020).

    Article 
    CAS 

    Google Scholar 

  • Jiang, L., Cheng, Y., Wang, S., Xu, Z. & Zhao, Y. Non-fluorine oil repellency: how low the intrinsic wetting threshold can be for roughness-induced contact angle amplification? Langmuir 38, 5857–5864 (2022).

    Article 
    CAS 

    Google Scholar 

  • Ge, M. et al. A ‘PDMS-in-water’ emulsion enables mechanochemically robust superhydrophobic surfaces with self-healing nature. Nanoscale Horiz. 5, 65–73 (2020).

    Article 
    CAS 

    Google Scholar 

  • Chauvin, J. P. R. & Pratt, D. A. On the reactions of thiols, sulfenic acids, and sulfinic acids with hydrogen peroxide. Angew. Chem. Int. Ed. 56, 6255–6259 (2017).

    Article 
    CAS 

    Google Scholar 

  • Gunji, T., Shigematsu, Y., Kajiwara, T. & Abe, Y. Preparation of free-standing films with sulfonyl group from 3-mercaptopropyl(trimethoxy)silane/1,2-bis(triethoxysilyl)ethane copolymer. Polym. J. 42, 684–688 (2010).

    Article 
    CAS 

    Google Scholar 

  • Remington, W. R. & Gladding, E. K. Equilibria in the dyeing of nylon with acid dyes. J. Am. Chem. Soc. 72, 2553–2559 (1950).

    Article 
    CAS 

    Google Scholar 

  • Herzberg, W. J. & Erwin, W. R. Gas-chromatographic study of the reaction of glass surfaces with dichlorodimethylsilane and chlorotrimethylsilane. J. Colloid Interface Sci. 33, 172–177 (1970).

    Article 
    CAS 

    Google Scholar 

  • Bielecki, R. M., Crobu, M. & Spencer, N. D. Polymer-brush lubrication in oil: sliding beyond the Stribeck curve. Tribol. Lett. 49, 263–272 (2013).

    Article 
    CAS 

    Google Scholar 

  • Zhou, S. M., Tashiro, K. & Ii, T. Moisture effect on structure and mechanical property of nylon 6 as studied by the time-resolved and simultaneous measurements of FT-IR and dynamic viscoelasticity under the controlled humidity at constant scanning rate. Polym. J. 33, 344–355 (2001).

    Article 
    CAS 

    Google Scholar 

  • Venoor, V., Park, J. H., Kazmer, D. O. & Sobkowicz, M. J. Understanding the effect of water in polyamides: a review. Polym. Rev. 61, 598–645 (2021).

    Article 
    CAS 

    Google Scholar 

  • Napper, I. E. & Thompson, R. C. Release of synthetic microplastic plastic fibres from domestic washing machines: effects of fabric type and washing conditions. Mar. Pollut. Bull. 112, 39–45 (2016).

    Article 
    CAS 

    Google Scholar 

  • Napper, I. E., Barrett, A. C. & Thompson, R. C. The efficiency of devices intended to reduce microfibre release during clothes washing. Sci. Total Environ. 738, 140412 (2020).

    Article 
    CAS 

    Google Scholar 

  • Chiong, J. A., Tran, H., Lin, Y., Zheng, Y. & Bao, Z. Integrating emerging polymer chemistries for the advancement of recyclable, biodegradable, and biocompatible electronics. Adv. Sci. 8, 2101233 (2021).

    Article 
    CAS 

    Google Scholar 

  • Ceseracciu, L., Heredia-Guerrero, J. A., Dante, S., Athanassiou, A. & Bayer, I. S. Robust and biodegradable elastomers based on corn starch and polydimethylsiloxane (PDMS). ACS Appl. Mater. Interfaces 7, 3742–3753 (2015).

    Article 
    CAS 

    Google Scholar 

  • De Falco, F., Gentile, G., Di Pace, E., Avella, M. & Cocca, M. Quantification of microfibres released during washing of synthetic clothes in real conditions and at lab scale. Eur. Phys. J. 133, 257 (2018).

    Google Scholar 


  • Source: Resources - nature.com

    Formation of necromass-derived soil organic carbon determined by microbial death pathways

    Mycelial nutrient transfer promotes bacterial co-metabolic organochlorine pesticide degradation in nutrient-deprived environments